
globus-sdk-python
Release 3.0.0a2

Globus Team

Jun 10, 2021

GETTING STARTED

1 Table of Contents 3

Python Module Index 89

Index 91

i

ii

globus-sdk-python, Release 3.0.0a2

This SDK provides a convenient Pythonic interface to Globus web APIs, including the Transfer API and the Globus
Auth API. Documentation for the APIs is available at https://docs.globus.org/api/.

Two interfaces are provided - a low level interface, supporting only GET, PUT, POST, and DELETE operations, and a
high level interface providing helper methods for common API resources.

Additionally, some tools for interacting with local endpoint definitions are provided.

Source code is available at https://github.com/globus/globus-sdk-python.

GETTING STARTED 1

https://www.globus.org
https://docs.globus.org/api/
https://github.com/globus/globus-sdk-python

globus-sdk-python, Release 3.0.0a2

2 GETTING STARTED

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Installation

The Globus SDK requires Python 2.7+ or 3.4+. If a supported version of Python is not already installed on your
system, see this Python installation guide .

The simplest way to install the Globus SDK is using the pip package manager (https://pypi.python.org/pypi/pip),
which is included in most Python installations:

pip install globus-sdk

This will install the Globus SDK and it’s dependencies.

Bleeding edge versions of the Globus SDK can be installed by checking out the git repository and installing it manu-
ally:

git clone https://github.com/globus/globus-sdk-python.git
cd globus-sdk-python
python setup.py install

1.2 Tutorial

1.2.1 First Steps

This is a tutorial in the use of the Globus SDK. It takes you through a simple step-by-step flow for registering your
application, getting tokens, and using them with our service.

These are the steps we will take:

1. Get a Client

2. Get and Save Client ID

3. Get Some Access Tokens!

4. Use Your Tokens, Talk to the Service

That should be enough to get you up and started. You can also proceed to the Advanced Tutorial steps to dig deeper
into the SDK.

3

https://www.python.org/
http://docs.python-guide.org/en/latest/starting/installation/
https://pypi.python.org/pypi/pip

globus-sdk-python, Release 3.0.0a2

Step 1: Get a Client

In order to complete an OAuth2 flow to get tokens, you must have a client or “app” definition registered with Globus.

Navigate to the Developer Site and select “Register your app with Globus.” You will be prompted to login – do so with
the account you wish to use as your app’s administrator.

When prompted, create a Project named “SDK Tutorial Project”. Projects let you share the administrative burden of a
collection of apps, but we won’t be sharing the SDK Tutorial Project.

In the “Add. . . ” menu for “SDK Tutorial Project”, select “Add new app”.

Enter the following pieces of information:

• App Name: “SDK Tutorial App”

• Scopes: “openid”, “profile”, “email”, “urn:globus:auth:scope:transfer.api.globus.org:all”

• Redirects: https://auth.globus.org/v2/web/auth-code

• Required Identity Provider: <Leave Unchecked>

• Privacy Policy: <Leave Blank>

• Terms & Conditions: <Leave Blank>

• Native App: Check this Box

and click “Create App”.

Warning: The Native App setting cannot be changed after a client is created.

Step 2: Get and Save Client ID

On the “Apps” screen you should now see all of your Projects, probably just “SDK Tutorial Project”, and all of the
Apps they contain, probably just “SDK Tutorial App”. Expand the dropdown for the tutorial App, and you should see
an array of attributes of your client, including the ones we specified in Step 1, and a bunch of new things.

We want to get the Client ID from this screen. Feel free to think of this as your App’s “username”. You can hardcode
it into scripts, store it in a config file, or even put it into a database. It’s non-secure information and you can treat it as
such.

In the rest of the tutorial we will assume in all code samples that it is available in the variable, CLIENT_ID.

Step 3: Get Some Access Tokens!

Talking to Globus Services as a user requires that you authenticate to your new App and get it Tokens, credentials
proving that you logged into it and gave it permission to access the service.

No need to worry about creating your own login pages and such – for this type of app, Globus provides all of that for
you. Run the following code sample to get your Access Tokens:

import globus_sdk

CLIENT_ID = "<YOUR_ID_HERE>"

client = globus_sdk.NativeAppAuthClient(CLIENT_ID)
client.oauth2_start_flow()

(continues on next page)

4 Chapter 1. Table of Contents

https://developers.globus.org
urn:globus:auth:scope:transfer.api.globus.org:all
https://auth.globus.org/v2/web/auth-code

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

authorize_url = client.oauth2_get_authorize_url()
print("Please go to this URL and login: {0}".format(authorize_url))

auth_code = input("Please enter the code you get after login here: ").strip()
token_response = client.oauth2_exchange_code_for_tokens(auth_code)

globus_auth_data = token_response.by_resource_server["auth.globus.org"]
globus_transfer_data = token_response.by_resource_server["transfer.api.globus.org"]

most specifically, you want these tokens as strings
AUTH_TOKEN = globus_auth_data["access_token"]
TRANSFER_TOKEN = globus_transfer_data["access_token"]

Managing credentials is one of the more advanced features of the SDK. If you want to read in depth about these steps,
please look through our various Examples.

Step 4: Use Your Tokens, Talk to the Service

Continuing from the example above, you have two credentials to Globus Services on hand: the AUTH_TOKEN and the
TRANSFER_TOKEN. We’ll focus on the TRANSFER_TOKEN for now. It’s how you authorize access to the Globus
Transfer service.

a GlobusAuthorizer is an auxiliary object we use to wrap the token. In
more advanced scenarios, other types of GlobusAuthorizers give us
expressive power
authorizer = globus_sdk.AccessTokenAuthorizer(TRANSFER_TOKEN)
tc = globus_sdk.TransferClient(authorizer=authorizer)

high level interface; provides iterators for list responses
print("My Endpoints:")
for ep in tc.endpoint_search(filter_scope="my-endpoints"):

print("[{}] {}".format(ep["id"], ep["display_name"]))

Note that the TRANSFER_TOKEN is only valid for a limited time. You’ll have to login again when it expires.

1.2.2 Advanced Tutorial

In the first 4 steps of the Tutorial, we did a lot of hocus-pocus to procure Access Tokens, but we didn’t dive into how
we are getting them (or why they exist at all). Not only will we talk through more detail on Access Tokens, but we’ll
also explore more advanced use cases and their near-cousins, Refresh Tokens.

Advanced 1: Exploring the OAuthTokenResponse

We powered through the OAuth2 flow in the basic tutorial. It’s worth looking closer at the token response itself, as it
is of particular interest. This is the ultimate product of the flow, and it contains all of the credentials that we’ll want
and need moving forward.

Remember:

client = globus_sdk.NativeAppAuthClient(CLIENT_ID)
client.oauth2_start_flow()

(continues on next page)

1.2. Tutorial 5

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

print("Please go to this URL and login: {0}".format(client.oauth2_get_authorize_
→˓url()))

auth_code = input("Please enter the code here: ").strip()
token_response = client.oauth2_exchange_code_for_tokens(auth_code)

Though it has a few attributes and methods, by far the most important thing about token_response to understand
is token_response.by_resource_server.

Let’s take a look at str(token_response.by_resource_server):

>>> str(token_response.by_resource_server)
{

"auth.globus.org": {
"access_token": "AQBX8YvVAAAAAAADxhAtF46RxjcFuoxN1oSOmEk-

→˓hBqvOejY4imMbZlC0B8THfoFuOK9rshN6TV7I0uwf0hb",
"scope": "openid email profile",
"token_type": "Bearer",
"expires_at_seconds": 1476121216,
"refresh_token": None

},
"transfer.api.globus.org": {
"access_token": "AQBX8YvVAAAAAAADxg-u9uULMyTkLw4_15ReO_

→˓f2E056wLqjAWeLP51pgakLxYmyUDfGTd4SnYCiRjFq3mnj",
"scope": "urn:globus:auth:scope:transfer.api.globus.org:all",
"token_type": "Bearer",
"expires_at_seconds": 1476121286,
"refresh_token": None

}
}

A token response is structured with the following info:

• Resource Servers: The services (e.x. APIs) which require Tokens. These are the keys, “auth.globus.org” and
“transfer.api.globus.org”

• Access Tokens: Credentials you can use to talk to Resource Servers. We get back separate Access Tokens for
each Resource Server. Importantly, this means that if Globus is issuing tokens to evil.api.example.com, you
don’t need to worry that evil.api.example.com will ever see tokens valid for Globus Transfer

• Scope: A list of activities that the Access Token is good for against the Resource Server. They are defined and
enforced by the Resource Server.

• token_type: With what kind of authorization should the Access Token be used? For the foreseeable future, all
Globus tokens are sent as Bearer Auth headers.

• expires_at_seconds: A POSIX timestamp – the time at which the relevant Access Token expires and is no longer
accepted by the service.

• Refresh Tokens: Credentials used to replace or “refresh” your access tokens when they expire. If requested,
you’ll get one for each Resource Server. Details on their usage are in the next Advanced Tutorial

6 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

Advanced 2: Refresh Tokens, Never Login Again

Logging in to Globus through the web interface gets pretty old pretty fast. In fact, as soon as you write your first
cron job against Globus, you’ll need something better. Enter Refresh Tokens: credentials which never expire unless
revoked, and which can be used to get new Access Tokens whenever those do expire.

Getting yourself refresh tokens to play with is actually pretty easy. Just tweak your login flow with one argument:

client = globus_sdk.NativeAppAuthClient(CLIENT_ID)
client.oauth2_start_flow(refresh_tokens=True)

print("Please go to this URL and login: {0}".format(client.oauth2_get_authorize_
→˓url()))

auth_code = input("Please enter the code here: ").strip()
token_response = client.oauth2_exchange_code_for_tokens(auth_code)

If you peek at the token_response now, you’ll see that the "refresh_token" fields are no longer nulled.

Now we’ve got a problem though: it’s great to say that you can refresh tokens whenever you want, but how do you
know when to do that? And what if an Access Token gets revoked before it’s ready to expire? It turns out that using
these correctly is pretty delicate, but there is a way forward that’s pretty much painless.

Let’s assume you want to do this with the globus_sdk.TransferClient.

let's get stuff for the Globus Transfer service
globus_transfer_data = token_response.by_resource_server["transfer.api.globus.org"]
the refresh token and access token, often abbr. as RT and AT
transfer_rt = globus_transfer_data["refresh_token"]
transfer_at = globus_transfer_data["access_token"]
expires_at_s = globus_transfer_data["expires_at_seconds"]

Now we've got the data we need, but what do we do?
That "GlobusAuthorizer" from before is about to come to the rescue

authorizer = globus_sdk.RefreshTokenAuthorizer(
transfer_rt, client, access_token=transfer_at, expires_at=expires_at_s

)

and try using `tc` to make TransferClient calls. Everything should just
work -- for days and days, months and months, even years
tc = globus_sdk.TransferClient(authorizer=authorizer)

A couple of things to note about this: access_token and expires_at are optional arguments to
RefreshTokenAuthorizer. So, if all you’ve got on hand is a refresh token, it can handle the bootstrapping
problem. Also, it’s good to know that the RefreshTokenAuthorizer will retry the first call that fails with an
authorization error. If the second call also fails, it won’t try anymore.

Finally, and perhaps most importantly, we must stress that you need to protect your Refresh Tokens. They are an
infinite lifetime credential to act as you, so, like passwords, they should only be stored in secure locations.

1.2. Tutorial 7

globus-sdk-python, Release 3.0.0a2

1.3 Service Clients

The Globus SDK provides a client class for every public Globus API. Each client object takes authentication creden-
tials from config files, environment variables, or programmatically via GlobusAuthorizers.

Once instantiated, a Client gives you high-level interface to make API calls, without needing to know Globus API
endpoints or their various parameters.

For example, you could use the TransferClient to list your task history very simply:

from globus_sdk import TransferClient, AccessTokenAuthorizer

you must have a valid transfer token for this to work
tc = TransferClient(

authorizer=AccessTokenAuthorizer("TRANSFER_TOKEN_STRING")
)

print("My Last 25 Tasks:")
`filter` to get Delete Tasks (default is just Transfer Tasks)
for task in tc.task_list(num_results=25, filter="type:TRANSFER,DELETE"):

print(task["task_id"], task["type"], task["status"])

Note: Multi-Thread and Multi-Process Safety

Each Globus SDK client class holds a networking session object to interact with the Globus API. Using a previously
created service client object after forking or between multiple threads should be considered unsafe. In multi-processing
applications, it is recommended to create service client objects after process forking and to ensure that there is only
one service client instance created per process.

1.3.1 Globus Auth

There are several types of client object for communicating with the Globus Auth service. A client object
may represent your application (as the driver of authentication and authorization flows), in which case the
NativeAppAuthClient or ConfidentialAppAuthClient classes should generally be used.

class globus_sdk.AuthClient(client_id=None, **kwargs)
Bases: globus_sdk.client.BaseClient

Client for the Globus Auth API

This class provides helper methods for most common resources in the Auth API, and the common low-level
interface from BaseClient of get, put, post, and delete methods, which can be used to access any API
resource.

There are generally two types of resources, distinguished by the type of authentication which they use. Re-
sources available to end users of Globus are authenticated with a Globus Auth Token (“Authentication: Bearer
. . . ”), while resources available to OAuth Clients are authenticated using Basic Auth with the Client’s ID and
Secret. Some resources may be available with either authentication type.

Examples

Initializing an AuthClient to authenticate a user making calls to the Globus Auth service with an access
token takes the form

>>> from globus_sdk import AuthClient, AccessTokenAuthorizer
>>> ac = AuthClient(authorizer=AccessTokenAuthorizer('<token_string>'))

8 Chapter 1. Table of Contents

https://docs.globus.org/api/auth/

globus-sdk-python, Release 3.0.0a2

You can, of course, use other kinds of Authorizers (notably the RefreshTokenAuthorizer).

Methods

• get_identities()

• get_jwk()

• get_openid_configuration()

• oauth2_exchange_code_for_tokens()

• oauth2_get_authorize_url()

• oauth2_refresh_token()

• oauth2_revoke_token()

• oauth2_token()

• oauth2_userinfo()

• oauth2_validate_token()

get_identities(usernames=None, ids=None, provision=False, **params)
GET /v2/api/identities

Given usernames=<U> or (exclusive) ids=<I> as keyword arguments, looks up identity information
for the set of identities provided. <U> and <I> in this case are comma-delimited strings listing multiple
Identity Usernames or Identity IDs, or iterables of strings, each of which is an Identity Username or
Identity ID.

If Globus Auth’s identity auto-provisioning behavior is desired, provision=True may be specified.

Available with any authentication/client type.

Examples

>>> ac = globus_sdk.AuthClient(...)
>>> # by IDs
>>> r = ac.get_identities(ids="46bd0f56-e24f-11e5-a510-131bef46955c")
>>> r.data
{u'identities': [{u'email': None,

u'id': u'46bd0f56-e24f-11e5-a510-131bef46955c',
u'identity_provider': u'7daddf46-70c5-45ee-9f0f-7244fe7c8707',
u'name': None,
u'organization': None,
u'status': u'unused',
u'username': u'globus@globus.org'}]}

>>> ac.get_identities(
>>> ids=",".join(
>>> ("46bd0f56-e24f-11e5-a510-131bef46955c",
>>> "168edc3d-c6ba-478c-9cf8-541ff5ebdc1c"))
...
>>> # or by usernames
>>> ac.get_identities(usernames='globus@globus.org')
...
>>> ac.get_identities(
>>> usernames='globus@globus.org,auth@globus.org')
...

You could also use iterables:

1.3. Service Clients 9

globus-sdk-python, Release 3.0.0a2

>>> ac.get_identities(
>>> usernames=['globus@globus.org', 'auth@globus.org'])
...
>>> ac.get_identities(
>>> ids=["46bd0f56-e24f-11e5-a510-131bef46955c",
>>> "168edc3d-c6ba-478c-9cf8-541ff5ebdc1c"])
...

External Documentation

See Identities Resources in the API documentation for details.

oauth2_get_authorize_url(additional_params=None)
Get the authorization URL to which users should be sent. This method may only be called after
oauth2_start_flow has been called on this AuthClient.

Parameters additional_params (dict, optional) – Additional query parameters to
include in the authorize URL. Primarily for internal use

Return type string

oauth2_exchange_code_for_tokens(auth_code)
Exchange an authorization code for a token or tokens.

Return type OAuthTokenResponse

Parameters auth_code (str) – An auth code typically obtained by sending the user to the
authorize URL. The code is a very short-lived credential which this method is exchanging
for tokens. Tokens are the credentials used to authenticate against Globus APIs.

oauth2_refresh_token(refresh_token, additional_params=None)
Exchange a refresh token for a OAuthTokenResponse, containing an access token.

Does a token call of the form

refresh_token=<refresh_token>
grant_type=refresh_token

plus any additional parameters you may specify.

Parameters

• refresh_token (str) – A Globus Refresh Token as a string

• additional_params (dict, optional) – A dict of extra params to encode in the
refresh call.

oauth2_validate_token(token, additional_params=None)
Validate a token. It can be an Access Token or a Refresh token.

This call can be used to check tokens issued to your client, confirming that they are or are not still valid.
The resulting response has the form {"active": True} when the token is valid, and {"active":
False} when it is not.

It is not necessary to validate tokens immediately after receiving them from the service – any tokens which
you are issued will be valid at that time. This is more for the purpose of doing checks like

• confirm that oauth2_revoke_token succeeded

• at application boot, confirm no need to do fresh login

Parameters

10 Chapter 1. Table of Contents

https://docs.globus.org/api/auth/reference/#v2_api_identities_resources

globus-sdk-python, Release 3.0.0a2

• token (str) – The token which should be validated. Can be a refresh token or an access
token

• additional_params (dict, optional) – Additional parameters to include in the
validation body. Primarily for internal use

Examples

Revoke a token and confirm that it is no longer active:

>>> from globus_sdk import ConfidentialAppAuthClient
>>> ac = ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)
>>> ac.oauth2_revoke_token('<token_string>')
>>> data = ac.oauth2_validate_token('<token_string>')
>>> assert not data['active']

During application boot, check if the user needs to do a login, even if a token is present:

>>> from globus_sdk import ConfidentialAppAuthClient
>>> ac = ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)
>>> # this is not an SDK function, but a hypothetical function which
>>> # you use to load a token out of configuration data
>>> tok = load_token_from_config(...)
>>>
>>> if not tok or not ac.oauth2_validate_token(tok)['active']:
>>> # do_new_login() is another hypothetical helper
>>> tok = do_new_login()
>>> # at this point, tok is expected to be a valid token

oauth2_revoke_token(token, additional_params=None)
Revoke a token. It can be an Access Token or a Refresh token.

This call should be used to revoke tokens issued to your client, rendering them inert and not further usable.
Typically, this is incorporated into “logout” functionality, but it should also be used if the client detects
that its tokens are in an unsafe location (e.x. found in a world-readable logfile).

You can check the “active” status of the token after revocation if you want to confirm that it was revoked.

Parameters

• token (str) – The token which should be revoked

• additional_params – Additional parameters to include in the revocation body, which
can help speed the revocation process. Primarily for internal use

Examples

>>> from globus_sdk import ConfidentialAppAuthClient
>>> ac = ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)
>>> ac.oauth2_revoke_token('<token_string>')

oauth2_token(form_data, response_class: Type[T])→ T
oauth2_token(form_data)→ globus_sdk.services.auth.token_response.OAuthTokenResponse

This is the generic form of calling the OAuth2 Token endpoint. It takes form_data, a dict which will be
encoded in a form POST body on the request.

Generally, users of the SDK should not call this method unless they are implementing OAuth2 flows.

Parameters response_class (class, optional) – This is used by calls to the
oauth2_token endpoint which need to specialize their responses. For example,

1.3. Service Clients 11

globus-sdk-python, Release 3.0.0a2

oauth2_get_dependent_tokens requires a specialize response class to handle the
dramatically different format of the Dependent Token Grant response

Return type response_class

oauth2_userinfo()
Call the Userinfo endpoint of Globus Auth. Userinfo is specified as part of the OpenID Connect (OIDC)
standard, and Globus Auth’s Userinfo is OIDC-compliant.

The exact data returned will depend upon the set of OIDC-related scopes which were used to acquire the
token being used for this call. For details, see the External Documentation below.

Examples

>>> ac = AuthClient(...)
>>> info = ac.oauth2_userinfo()
>>> print('Effective Identity "{}" has Full Name "{}" and Email "{}"'
>>> .format(info["sub"], info["name"], info["email"]))

External Documentation

See Userinfo in the API documentation for details.

get_openid_configuration()
Fetch the OpenID Connect configuration data from the well-known URI for Globus Auth.

get_jwk(openid_configuration=None, as_pem=False)
Fetch the Globus Auth JWK.

Returns either a dict or an RSA Public Key object depending on as_pem.

Parameters

• openid_configuration (dict or GlobusHTTPResponse) – The OIDC con-
fig as a GlobusHTTPResponse or dict. When not provided, it will be fetched automatically.

• as_pem (bool) – Decode the JWK to an RSA PEM key, typically for JWT decoding

class globus_sdk.NativeAppAuthClient(client_id, **kwargs)
Bases: globus_sdk.services.auth.client_types.base.AuthClient

This type of AuthClient is used to represent a Native App’s communications with Globus Auth. It requires
a Client ID, and cannot take an authorizer.

Native Apps are applications, like the Globus CLI, which are run client-side and therefore cannot keep secrets.
Unable to possess client credentials, several Globus Auth interactions have to be specialized to accommodate
the absence of a secret.

Any keyword arguments given are passed through to the AuthClient constructor.

Methods

• oauth2_refresh_token()

• oauth2_start_flow()

oauth2_start_flow(requested_scopes=None, redirect_uri=None, state='_default', verifier=None,
refresh_tokens=False, prefill_named_grant=None)

Starts a Native App OAuth2 flow.

This is done internally by instantiating a GlobusNativeAppFlowManager

While the flow is in progress, the NativeAppAuthClient becomes non thread-safe as temporary state
is stored during the flow.

Parameters

12 Chapter 1. Table of Contents

https://docs.globus.org/api/auth/reference/#get_or_post_v2_oauth2_userinfo_resource

globus-sdk-python, Release 3.0.0a2

• requested_scopes (str or iterable of str, optional) – The scopes
on the token(s) being requested, as a space-separated string or iterable of strings.
Defaults to openid profile email urn:globus:auth:scope:transfer.
api.globus.org:all

• redirect_uri – The page that users should be directed to after authenticating at the
authorize URL. Defaults to ‘https://auth.globus.org/v2/web/auth-code’, which displays the
resulting auth_code for users to copy-paste back into your application (and thereby be
passed back to the GlobusNativeAppFlowManager)

• state (str, optional) – The redirect_uri page will have this included in a
query parameter, so you can use it to pass information to that page if you use a custom
page. It defaults to the string ‘_default’

• verifier (str, optional) – A secret used for the Native App flow. It
will by default be a freshly generated random string, known only to this
GlobusNativeAppFlowManager instance

• refresh_tokens (bool, optional) – When True, request refresh tokens in addi-
tion to access tokens. [Default: False]

• prefill_named_grant (str, optional) – Prefill the named grant label on the
consent page

Examples

You can see an example of this flow in the usage examples

External Documentation

The Globus Auth specification for Native App grants details the modifications to the Authorization Code
grant flow as The PKCE Security Protocol

oauth2_refresh_token(refresh_token)
NativeAppAuthClient specializes the refresh token grant to include its client ID as a parameter in
the POST body. It needs this specialization because it cannot authenticate the refresh grant call with client
credentials, as is normal.

class globus_sdk.ConfidentialAppAuthClient(client_id, client_secret, **kwargs)
Bases: globus_sdk.services.auth.client_types.base.AuthClient

This is a specialized type of AuthClient used to represent an App with a Client ID and Client Secret wishing
to communicate with Globus Auth. It must be given a Client ID and a Client Secret, and furthermore, these will
be used to establish a BasicAuthorizer <globus_sdk.authorizers.BasicAuthorizer for au-
thorization purposes. Additionally, the Client ID is stored for use in various calls.

Confidential Applications (i.e. Applications with are not Native Apps) are those like the Sample Data Portal,
which have their own credentials for authenticating against Globus Auth.

Any keyword arguments given are passed through to the AuthClient constructor.

Methods

• oauth2_client_credentials_tokens()

• oauth2_get_dependent_tokens()

• oauth2_start_flow()

• oauth2_token_introspect()

oauth2_client_credentials_tokens(requested_scopes=None) →
globus_sdk.services.auth.token_response.OAuthTokenResponse

Perform an OAuth2 Client Credentials Grant to get access tokens which directly represent your client

1.3. Service Clients 13

https://auth.globus.org/v2/web/auth-code
https://docs.globus.org/api/auth/developer-guide/#pkce
https://github.com/globus/globus-sample-data-portal

globus-sdk-python, Release 3.0.0a2

and allow it to act on its own (independent of any user authorization). This method does not use a
GlobusOAuthFlowManager because it is not at all necessary to do so.

Parameters requested_scopes (str, optional) – Space-separated scope names be-
ing requested for the access token(s). Defaults to a set of commonly desired scopes for
Globus.

Return type OAuthTokenResponse

For example, with a Client ID of “CID1001” and a Client Secret of “RAND2002”, you could use this grant
type like so:

>>> client = ConfidentialAppAuthClient("CID1001", "RAND2002")
>>> tokens = client.oauth2_client_credentials_tokens()
>>> transfer_token_info = (
... tokens.by_resource_server["transfer.api.globus.org"])
>>> transfer_token = transfer_token_info["access_token"]

oauth2_start_flow(redirect_uri, requested_scopes=None, state='_default', refresh_tokens=False)
Starts or resumes an Authorization Code OAuth2 flow.

Under the hood, this is done by instantiating a GlobusAuthorizationCodeFlowManager

Parameters

• redirect_uri (str redirect_uri (string)) – The page that users should be directed
to after authenticating at the authorize URL.

• requested_scopes (str or iterable of str, optional) – The scopes
on the token(s) being requested, as a space-separated string or an iterable of strings.
Defaults to openid profile email urn:globus:auth:scope:transfer.
api.globus.org:all

• state (str, optional) – This string allows an application to pass information back
to itself in the course of the OAuth flow. Because the user will navigate away from the
application to complete the flow, this parameter lets the app pass an arbitrary string from
the starting page to the redirect_uri

• refresh_tokens (bool, optional) – When True, request refresh tokens in addi-
tion to access tokens. [Default: False]

Examples

You can see an example of this flow in the usage examples

External Documentation

The Authorization Code Grant flow is described in the Globus Auth Specification

oauth2_get_dependent_tokens(token, additional_params=None) →
globus_sdk.services.auth.token_response.OAuthDependentTokenResponse

Does a Dependent Token Grant against Globus Auth. This exchanges a token given to this client for a new
set of tokens which give it access to resource servers on which it depends. This grant type is intended for
use by Resource Servers playing out the following scenario:

1. User has tokens for Service A, but Service A requires access to Service B on behalf of the user

2. Service B should not see tokens scoped for Service A

3. Service A therefore requests tokens scoped only for Service B, based on tokens which were originally
scoped for Service A. . .

14 Chapter 1. Table of Contents

https://docs.globus.org/api/auth/developer-guide/#obtaining-authorization
https://docs.globus.org/api/auth/reference/#dependent_token_grant_post_v2_oauth2_token

globus-sdk-python, Release 3.0.0a2

In order to do this exchange, the tokens for Service A must have scopes which depend on scopes for
Service B (the services’ scopes must encode their relationship). As long as that is the case, Service A can
use this Grant to get those “Dependent” or “Downstream” tokens for Service B.

Parameters

• token (str) – A Globus Access Token as a string

• additional_params (dict, optional) – Additional parameters to include in the
request body

Return type OAuthDependentTokenResponse

oauth2_token_introspect(token, include=None)
POST /v2/oauth2/token/introspect

Get information about a Globus Auth token.

>>> ac = globus_sdk.ConfidentialAppAuthClient(
... CLIENT_ID, CLIENT_SECRET)
>>> ac.oauth2_token_introspect('<token_string>')

Get information about a Globus Auth token including the full identity set of the user to whom it belongs

>>> ac = globus_sdk.ConfidentialAppAuthClient(
... CLIENT_ID, CLIENT_SECRET)
>>> data = ac.oauth2_token_introspect(
... '<token_string>', include='identity_set')
>>> for identity in data['identity_set']:
>>> print('token authenticates for "{}"'.format(identity))

Parameters

• token (str) – An Access Token as a raw string, being evaluated

• include (str, optional) – A value for the include parameter in the request
body. Default is to omit the parameter.

External Documentation

See Token Introspection in the API documentation for details.

Helper Objects

The IdentityMap is a specialized object which aids in the particular use-case in which the Globus Auth
get_identities API is being used to resolve large numbers of usernames or IDs. It combines caching, request
batching, and other functionality.

class globus_sdk.IdentityMap(auth_client, identity_ids=None, id_batch_size=None)
Bases: object

There’s a common pattern of having a large batch of Globus Auth Identities which you want to inspect. For
example, you may have a list of identity IDs fetched from Access Control Lists on Globus Endpoints. In order
to display these identities to an end user, you may want to resolve them to usernames.

However, naively looking up the identities one-by-one is very inefficient. It’s best to do batched lookups with
multiple identities at once. In these cases, an IdentityMap can be used to do those batched lookups for you.

An IdentityMap is a mapping-like type which converts Identity IDs and Identity Names to Identity records
(dictionaries) using the Globus Auth API.

1.3. Service Clients 15

https://docs.globus.org/api/auth/reference/#token_introspection_post_v2_oauth2_token_introspect

globus-sdk-python, Release 3.0.0a2

Note: IdentityMap objects are not full Mappings in the same sense as python dicts and similar objects. By
design, they only implement a small part of the Mapping protocol.

The basic usage pattern is

• create an IdentityMap with an AuthClient which will be used to call out to Globus Auth

• seed the IdentityMap with IDs and Usernames via add() (you can also do this during initialization)

• retrieve identity IDs or Usernames from the map

Because the map can be populated with a collection of identity IDs and Usernames prior to lookups being
performed, it can improve the efficiency of these operations up to 100x over individual lookups.

If you attempt to retrieve an identity which has not been previously added to the map, it will be immediately
added. But adding many identities beforehand will improve performance.

The IdentityMap will cache its results so that repeated lookups of the same Identity will not repeat work. It
will also map identities both by ID and by Username, regardless of how they’re initially looked up.

Warning: If an Identity is not found in Globus Auth, it will trigger a KeyError when looked up. Your code
must be ready to handle KeyErrors when doing a lookup.

Correct usage looks something like so:

ac = globus_sdk.AuthClient(...)
idmap = globus_sdk.IdentityMap(

ac, ["foo@globusid.org", "bar@uchicago.edu"]
)
idmap.add("baz@xsede.org")
adding by ID is also valid
idmap.add("c699d42e-d274-11e5-bf75-1fc5bf53bb24")
map ID to username
assert (

idmap["c699d42e-d274-11e5-bf75-1fc5bf53bb24"]["username"]
== "go@globusid.org"

)
map username to ID
assert (

idmap["go@globusid.org"]["id"]
== "c699d42e-d274-11e5-bf75-1fc5bf53bb24"

)

And simple handling of errors:

try:
record = idmap["no-such-valid-id@example.org"]

except KeyError:
username = "NO_SUCH_IDENTITY"

else:
username = record["username"]

or you may achieve this by using the get() method:

16 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

internally handles the KeyError and returns the default value
record = idmap.get("no-such-valid-id@example.org", None)
username = record["username"] if record is not None else "NO_SUCH_IDENTITY"

Parameters

• auth_client (AuthClient) – The client object which will be used for lookups against
Globus Auth

• identity_ids (iterable of str) – A list or other iterable of usernames or identity
IDs (potentially mixed together) which will be used to seed the IdentityMap ‘s tracking
of unresolved Identities.

• id_batch_size (int, optional) – A non-default batch size to use when communi-
cating with Globus Auth. Leaving this set to the default is strongly recommended.

Methods

• __delitem__()

• __getitem__()

• add()

• get()

__delitem__(key)
IdentityMap supports del map[key]. Note that this only removes lookup values from the cache
and will not impact the set of unresolved/pending IDs.

__getitem__(key)
IdentityMap supports dict-like lookups with map[key]

__init__(auth_client, identity_ids=None, id_batch_size=None)
Initialize self. See help(type(self)) for accurate signature.

add(identity_id)
Add a username or ID to the IdentityMap for batch lookups later.

Returns True if the ID was added for lookup. Returns False if it was rejected as a duplicate of an already
known name.

Parameters identity_id (str) – A string Identity ID or Identity Name (a.k.a. “username”)
to add

get(key, default=None)
A dict-like get() method which accepts a default value.

Auth Responses

class globus_sdk.services.auth.token_response.OAuthTokenResponse(*args,
**kwargs)

Bases: globus_sdk.response.GlobusHTTPResponse

Class for responses from the OAuth2 code for tokens exchange used in 3-legged OAuth flows.

property by_resource_server
Representation of the token response in a dict indexed by resource server.

Although OAuthTokenResponse.data is still available and valid, this representation is typically
more desirable for applications doing inspection of access tokens and refresh tokens.

1.3. Service Clients 17

globus-sdk-python, Release 3.0.0a2

property by_scopes
Representation of the token response in a dict-like object indexed by scope name (or even space delimited
scope names, so long as they match the same token).

If you request scopes scope1 scope2 scope3, where scope1 and scope2 are for the same service (and
therefore map to the same token), but scope3 is for a different service, the following forms of access are
valid:

>>> tokens = ...
>>> # single scope
>>> token_data = tokens.by_scopes['scope1']
>>> token_data = tokens.by_scopes['scope2']
>>> token_data = tokens.by_scopes['scope3']
>>> # matching scopes
>>> token_data = tokens.by_scopes['scope1 scope2']
>>> token_data = tokens.by_scopes['scope2 scope1']

decode_id_token(openid_configuration=None, jwk=None, jwt_params: Optional[Dict] = None)
Parse the included ID Token (OIDC) as a dict and return it.

If you provide the jwk, you must also provide openid_configuration.

Parameters

• openid_configuration (dict or GlobusHTTPResponse) – The OIDC con-
fig as a GlobusHTTPResponse or dict. When not provided, it will be fetched automatically.

• jwk (RSAPublicKey) – The JWK as a cryptography public key object. When not
provided, it will be fetched and parsed automatically.

• jwt_params (dict) – An optional dict of parameters to pass to the jwt decode step.
These are passed verbatim to the jwt library.

class globus_sdk.services.auth.token_response.OAuthDependentTokenResponse(*args,
**kwargs)

Bases: globus_sdk.services.auth.token_response.OAuthTokenResponse

Class for responses from the OAuth2 code for tokens retrieved by the OAuth2 Dependent Token Extension
Grant. For more complete docs, see oauth2_get_dependent_tokens

decode_id_token(auth_client)
Parse the included ID Token (OIDC) as a dict and return it.

If you provide the jwk, you must also provide openid_configuration.

Parameters

• openid_configuration (dict or GlobusHTTPResponse) – The OIDC con-
fig as a GlobusHTTPResponse or dict. When not provided, it will be fetched automatically.

• jwk (RSAPublicKey) – The JWK as a cryptography public key object. When not
provided, it will be fetched and parsed automatically.

• jwt_params (dict) – An optional dict of parameters to pass to the jwt decode step.
These are passed verbatim to the jwt library.

18 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

OAuth2 Flow Managers

These objects represent in-progress OAuth2 authentication flows. Most typically, you should not use these objects,
but rather rely on the globus_sdk.AuthClient object to manage one of these for you through its oauth2_*
methods.

All Flow Managers inherit from the GlobusOAuthFlowManager abstract class. They are a combination of a
store for OAuth2 parameters specific to the authentication method you are using and methods which act upon those
parameters.

class globus_sdk.services.auth.GlobusNativeAppFlowManager(auth_client:
globus_sdk.services.auth.client_types.base.AuthClient,
requested_scopes: Op-
tional[Union[str,
Sequence[str]]] =
None, redirect_uri:
Optional[str] = None,
state: str = '_default',
verifier: Optional[str]
= None, refresh_tokens:
bool = False, pre-
fill_named_grant:
Optional[str] = None)

Bases: globus_sdk.services.auth.oauth2_flow_manager.GlobusOAuthFlowManager

This is the OAuth flow designated for use by clients wishing to authenticate users in the absence of a Client
Secret. Because these applications run “natively” in the user’s environment, they cannot protect a secret. Instead,
a temporary secret is generated solely for this authentication attempt.

Parameters

• auth_client (NativeAppAuthClient) – The NativeAppAuthClient object
on which this flow is based. It is used to extract default values for the flow, and also to make
calls to the Auth service.

• requested_scopes (str or iterable of str, optional) – The scopes
on the token(s) being requested, as a space-separated string or iterable of strings.
Defaults to openid profile email urn:globus:auth:scope:transfer.
api.globus.org:all

• redirect_uri (str, optional) – The page that users should be directed to after
authenticating at the authorize URL. Defaults to ‘https://auth.globus.org/v2/web/auth-code’,
which displays the resulting auth_code for users to copy-paste back into your application
(and thereby be passed back to the GlobusNativeAppFlowManager)

• state (str, optional) – The redirect_uri page will have this included in a
query parameter, so you can use it to pass information to that page if you use a custom page.
It defaults to the string ‘_default’

• verifier (str, optional) – A secret used for the Native App flow. It
will by default be a freshly generated random string, known only to this
GlobusNativeAppFlowManager instance

• refresh_tokens (bool, optional) – When True, request refresh tokens in addition
to access tokens. [Default: False]

• prefill_named_grant (str, optional) – Prefill the named grant label on the
consent page

1.3. Service Clients 19

https://auth.globus.org/v2/web/auth-code

globus-sdk-python, Release 3.0.0a2

exchange_code_for_tokens(auth_code: str)→ globus_sdk.services.auth.token_response.OAuthTokenResponse
The second step of the Native App flow, exchange an authorization code for access tokens (and refresh
tokens if specified).

Return type OAuthTokenResponse

get_authorize_url(additional_params: Optional[Dict[str, Any]] = None)→ str
Start a Native App flow by getting the authorization URL to which users should be sent.

Parameters additional_params (dict, optional) – Additional query parameters to
include in the authorize URL. Primarily for internal use

Return type string

The returned URL string is encoded to be suitable to display to users in a link or to copy into their browser.
Users will be redirected either to your provided redirect_uri or to the default location, with the
auth_code embedded in a query parameter.

class globus_sdk.services.auth.GlobusAuthorizationCodeFlowManager(auth_client:
globus_sdk.services.auth.client_types.base.AuthClient,
redi-
rect_uri:
str, re-
quested_scopes:
Op-
tional[Union[str,
Se-
quence[str]]]
= None,
state: str
= '_de-
fault', re-
fresh_tokens:
bool =
False)

Bases: globus_sdk.services.auth.oauth2_flow_manager.GlobusOAuthFlowManager

This is the OAuth flow designated for use by Clients wishing to authenticate users in a web application backed
by a server-side component (e.g. an API). The key constraint is that there is a server-side system that can keep a
Client Secret without exposing it to the web client. For example, a Django application can rely on the webserver
to own the secret, so long as it doesn’t embed it in any of the pages it generates.

The application sends the user to get a temporary credential (an auth_code) associated with its Client ID. It
then exchanges that temporary credential for a token, protecting the exchange with its Client Secret (to prove
that it really is the application that the user just authorized).

Parameters

• auth_client (ConfidentialAppAuthClient) – The AuthClient used to ex-
tract default values for the flow, and also to make calls to the Auth service.

• redirect_uri (str) – The page that users should be directed to after authenticating at
the authorize URL.

• requested_scopes (str or iterable of str, optional) – The scopes
on the token(s) being requested, as a space-separated string or iterable of strings.
Defaults to openid profile email urn:globus:auth:scope:transfer.
api.globus.org:all

• state (str, optional) – This string allows an application to pass information back
to itself in the course of the OAuth flow. Because the user will navigate away from the

20 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

application to complete the flow, this parameter lets the app pass an arbitrary string from the
starting page to the redirect_uri

• refresh_tokens (bool, optional) – When True, request refresh tokens in addition
to access tokens. [Default: False]

exchange_code_for_tokens(auth_code: str)→ globus_sdk.services.auth.token_response.OAuthTokenResponse
The second step of the Authorization Code flow, exchange an authorization code for access tokens (and
refresh tokens if specified)

Return type OAuthTokenResponse

get_authorize_url(additional_params: Optional[Dict[str, Any]] = None)→ str
Start a Authorization Code flow by getting the authorization URL to which users should be sent.

Parameters additional_params (dict, optional) – Additional parameters to in-
clude in the authorize URL. Primarily for internal use

Return type string

The returned URL string is encoded to be suitable to display to users in a link or to copy into their browser.
Users will be redirected either to your provided redirect_uri or to the default location, with the
auth_code embedded in a query parameter.

Abstract Flow Manager

class globus_sdk.services.auth.oauth2_flow_manager.GlobusOAuthFlowManager
Bases: object

An abstract class definition that defines the interface for the Flow Managers for Globus Auth. Flow Managers
are really just bundles of parameters to Globus Auth’s OAuth2 mechanisms, along with some useful utility
methods. Primarily they can be used as a simple way of tracking small amounts of state in your application as it
leverages Globus Auth for authentication.

For sophisticated use cases, the provided Flow Managers will NOT be sufficient, but you should consider the
provided objects a model.

This way of managing OAuth2 flows is inspired by oauth2client. However, because oauth2client has an
uncertain future (as of 2016-08-31), and we would have to wrap it in order to provide a clean API surface
anyway, we implement our own set of Flow objects.

exchange_code_for_tokens(auth_code: str)
This method takes an auth_code and produces a response object containing one or more tokens. Most
typically, this is the second step of the flow, and consumes the auth_code that was sent to a redirect URI
used in the authorize step.

The exchange process may be parameterized over attributes of the specific flow manager instance which is
generating it.

Parameters auth_code (str) – The authorization code which was produced from the autho-
rization flow

Return type OAuthTokenResponse

get_authorize_url()→ str
This method consumes no arguments or keyword arguments, and produces a string URL for the Authorize
Step of a 3-legged OAuth2 flow. Most typically, this is the first step of the flow, and the user may be
redirected to the URL or provided with a link.

The authorize_url may be (usually is) parameterized over attributes of the specific flow manager instance
which is generating it.

1.3. Service Clients 21

https://github.com/google/oauth2client

globus-sdk-python, Release 3.0.0a2

Return type string

1.3.2 Globus Groups

class globus_sdk.GroupsClient(*, environment: Optional[str] = None, base_url:
Optional[str] = None, authorizer: Op-
tional[globus_sdk.authorizers.base.GlobusAuthorizer] = None,
app_name: Optional[str] = None, transport_params: Op-
tional[Dict] = None)

Bases: globus_sdk.client.BaseClient

Client for the Globus Groups API.

Methods

Client Errors

When an error occurs, a GroupsClient will raise this type of error:

class globus_sdk.GroupsAPIError(r, *args, **kw)
Bases: globus_sdk.exc.GlobusAPIError

Error class for the Globus Groups Service.

1.3.3 Globus Search

class globus_sdk.SearchClient(*, environment: Optional[str] = None, base_url:
Optional[str] = None, authorizer: Op-
tional[globus_sdk.authorizers.base.GlobusAuthorizer] = None,
app_name: Optional[str] = None, transport_params: Op-
tional[Dict] = None)

Bases: globus_sdk.client.BaseClient

Client for the Globus Search API

This class provides helper methods for most common resources in the API, and basic get, put, post, and
delete methods from the base client that can be used to access any API resource.

Parameters authorizer (GlobusAuthorizer) – An authorizer instance used for all calls
to Globus Search

Methods

Methods

• create_entry()

• delete_by_query()

• delete_entry()

• delete_subject()

• get_entry()

• get_index()

• get_subject()

• get_task()

22 Chapter 1. Table of Contents

https://docs.globus.org/api/groups/

globus-sdk-python, Release 3.0.0a2

• get_task_list()

• ingest()

• post_search()

• search()

• update_entry()

get_index(index_id, **params)→ globus_sdk.response.GlobusHTTPResponse
GET /v1/index/<index_id>

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> index = sc.get_index(index_id)
>>> assert index['index_id'] == index_id
>>> print(index["display_name"],
>>> "(" + index_id + "):",
>>> index["description"])

External Documentation

See Get Index Metadata in the API documentation for details.

search(index_id, q: str, offset: int = 0, limit: int = 10, advanced: bool = False, **params)
GET /v1/index/<index_id>/search

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> result = sc.search(index_id, 'query string')
>>> advanced_result = sc.search(index_id, 'author: "Ada Lovelace"',
>>> advanced=True)

External Documentation

See GET Search Query in the API documentation for details.

post_search(index_id, data)
POST /v1/index/<index_id>/search

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> query_data = {
>>> "@datatype": "GSearchRequest",
>>> "q": "user query",
>>> "filters": [
>>> {
>>> "type": "range",
>>> "field_name": "path.to.date",
>>> "values": [
>>> {"from": "*",
>>> "to": "2014-11-07"}
>>>]
>>> }
>>>],
>>> "facets": [
>>> {"name": "Publication Date",
>>> "field_name": "path.to.date",

(continues on next page)

1.3. Service Clients 23

https://docs.globus.org/api/search/index_meta/
https://docs.globus.org/api/search/search/#simple_get_query

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

>>> "type": "date_histogram",
>>> "date_interval": "year"}
>>>],
>>> "sort": [
>>> {"field_name": "path.to.date",
>>> "order": "asc"}
>>>]
>>> }
>>> search_result = sc.post_search(index_id, query_data)

External Documentation

See POST Search Query in the API documentation for details.

ingest(index_id, data)
POST /v1/index/<index_id>/ingest

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> ingest_data = {
>>> "ingest_type": "GMetaEntry",
>>> "ingest_data": {
>>> "subject": "https://example.com/foo/bar",
>>> "visible_to": ["public"],
>>> "content": {
>>> "foo/bar": "some val"
>>> }
>>> }
>>> }
>>> sc.ingest(index_id, ingest_data)

or with multiple entries at once via a GMetaList:

>>> sc = globus_sdk.SearchClient(...)
>>> ingest_data = {
>>> "ingest_type": "GMetaList",
>>> "ingest_data": {
>>> "gmeta": [
>>> {
>>> "subject": "https://example.com/foo/bar",
>>> "visible_to": ["public"],
>>> "content": {
>>> "foo/bar": "some val"
>>> }
>>> },
>>> {
>>> "subject": "https://example.com/foo/bar",
>>> "id": "otherentry",
>>> "visible_to": ["public"],
>>> "content": {
>>> "foo/bar": "some otherval"
>>> }
>>> }
>>>]
>>> }
>>> }
>>> sc.ingest(index_id, ingest_data)

24 Chapter 1. Table of Contents

https://docs.globus.org/api/search/search/#complex_post_query

globus-sdk-python, Release 3.0.0a2

External Documentation

See Ingest in the API documentation for details.

delete_by_query(index_id, data)
POST /v1/index/<index_id>/delete_by_query

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> query_data = {
>>> "q": "user query",
>>> "filters": [
>>> {
>>> "type": "range",
>>> "field_name": "path.to.date",
>>> "values": [
>>> {"from": "*",
>>> "to": "2014-11-07"}
>>>]
>>> }
>>>]
>>> }
>>> sc.delete_by_query(index_id, query_data)

External Documentation

See Delete By Query in the API documentation for details.

get_subject(index_id, subject: str, **params)
GET /v1/index/<index_id>/subject

Examples

Fetch the data for subject http://example.com/abc from index index_id:

>>> sc = globus_sdk.SearchClient(...)
>>> subject_data = sc.get_subject(index_id, 'http://example.com/abc')

External Documentation

See Get Subject in the API documentation for details.

delete_subject(index_id, subject: str, **params)
DELETE /v1/index/<index_id>/subject

Examples

Delete all data for subject http://example.com/abc from index index_id, even data which is
not visible to the current user:

>>> sc = globus_sdk.SearchClient(...)
>>> subject_data = sc.get_subject(index_id, 'http://example.com/abc')

External Documentation

See Delete Subject in the API documentation for details.

get_entry(index_id, subject: str, entry_id: Optional[str] = None, **params)
GET /v1/index/<index_id>/entry

Examples

Lookup the entry with a subject of https://example.com/foo/bar and a null entry_id:

1.3. Service Clients 25

https://docs.globus.org/api/search/ingest/
https://docs.globus.org/api/search/subject_ops/#delete_by_query
https://docs.globus.org/api/search/subject_ops/#get_by_subject
https://docs.globus.org/api/search/subject_ops/#delete_by_subject

globus-sdk-python, Release 3.0.0a2

>>> sc = globus_sdk.SearchClient(...)
>>> entry_data = sc.get_entry(index_id, 'http://example.com/foo/bar')

Lookup the entry with a subject of https://example.com/foo/bar and an entry_id of foo/bar:

>>> sc = globus_sdk.SearchClient(...)
>>> entry_data = sc.get_entry(index_id, 'http://example.com/foo/bar',
>>> entry_id='foo/bar')

External Documentation

See Get Entry in the API documentation for details.

create_entry(index_id, data)
POST /v1/index/<index_id>/entry

Examples

Create an entry with a subject of https://example.com/foo/bar and a null entry_id:

>>> sc = globus_sdk.SearchClient(...)
>>> sc.create_entry(index_id, {
>>> "subject": "https://example.com/foo/bar",
>>> "visible_to": ["public"],
>>> "content": {
>>> "foo/bar": "some val"
>>> }
>>> })

Create an entry with a subject of https://example.com/foo/bar and an entry_id of foo/bar:

>>> sc = globus_sdk.SearchClient(...)
>>> sc.create_entry(index_id, {
>>> "subject": "https://example.com/foo/bar",
>>> "visible_to": ["public"],
>>> "id": "foo/bar",
>>> "content": {
>>> "foo/bar": "some val"
>>> }
>>> })

External Documentation

See Create Entry in the API documentation for details.

update_entry(index_id, data)
PUT /v1/index/<index_id>/entry

Examples

Update an entry with a subject of https://example.com/foo/bar and a null entry_id:

>>> sc = globus_sdk.SearchClient(...)
>>> sc.update_entry(index_id, {
>>> "subject": "https://example.com/foo/bar",
>>> "visible_to": ["public"],
>>> "content": {
>>> "foo/bar": "some val"
>>> }
>>> })

26 Chapter 1. Table of Contents

https://docs.globus.org/api/search/entry_ops/#get_single_entry
https://docs.globus.org/api/search/entry_ops/#create_single_entry

globus-sdk-python, Release 3.0.0a2

External Documentation

See Update Entry in the API documentation for details.

delete_entry(index_id, subject: str, entry_id: Optional[str] = None, **params)
DELETE /v1/index/<index_id>/entry

Examples

Delete an entry with a subject of https://example.com/foo/bar and a null entry_id:

>>> sc = globus_sdk.SearchClient(...)
>>> sc.delete_entry(index_id, "https://example.com/foo/bar")

Delete an entry with a subject of https://example.com/foo/bar and an entry_id of “foo/bar”:

>>> sc = globus_sdk.SearchClient(...)
>>> sc.delete_entry(index_id, "https://example.com/foo/bar",
>>> entry_id="foo/bar")

External Documentation

See Delete Entry in the API documentation for details.

get_task(task_id, **params)
GET /v1/task/<task_id>

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> task = sc.get_task(task_id)
>>> assert task['index_id'] == known_index_id
>>> print(task["task_id"] + " | " + task['state'])

get_task_list(index_id, **params)
GET /v1/task_list/<index_id>

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> task_list = sc.get_task_list(index_id)
>>> for task in task_list['tasks']:
>>> print(task["task_id"] + " | " + task['state'])

Helper Objects

class globus_sdk.SearchQuery
Bases: dict

A specialized dict which has helpers for creating and modifying a Search Query document.

Example usage:

>>> from globus_sdk import SearchClient, SearchQuery
>>> sc = SearchClient(...)
>>> index_id = ...
>>> query = (SearchQuery(q='example query')
>>> .set_limit(100).set_offset(10)
>>> .add_filter('path.to.field1', ['foo', 'bar']))
>>> result = sc.post_search(index_id, query)

1.3. Service Clients 27

https://docs.globus.org/api/search/entry_ops/#update_single_entry
https://docs.globus.org/api/search/entry_ops/#delete_single_entry

globus-sdk-python, Release 3.0.0a2

Client Errors

When an error occurs, a SearchClient will raise this specialized type of error, rather than a generic
GlobusAPIError.

class globus_sdk.SearchAPIError(r)
Bases: globus_sdk.exc.GlobusAPIError

Error class for the Search API client. In addition to the inherited code and message instance variables,
provides:

Variables error_data – Additional object returned in the error response. May be a dict, list, or
None.

1.3.4 Globus Transfer

Client

The primary interface for the Globus Transfer API is the TransferClient class.

class globus_sdk.TransferClient(*, environment: Optional[str] = None, base_url:
Optional[str] = None, authorizer: Op-
tional[globus_sdk.authorizers.base.GlobusAuthorizer] =
None, app_name: Optional[str] = None, transport_params:
Optional[Dict] = None)

Bases: globus_sdk.client.BaseClient

Client for the Globus Transfer API.

This class provides helper methods for most common resources in the REST API, and basic get, put, post,
and delete methods from the base rest client that can be used to access any REST resource.

Some calls are paginated. If a call returns a PaginatedResource object, the result is an iterator
which can only be walked once. If you need to do multiple passes over the result, call list() on the
PaginatedResource or call the original method again to get fresh results.

Detailed documentation is available in the official REST API documentation, which is linked to from the method
documentation. Methods that allow arbitrary keyword arguments will pass the extra arguments as query param-
eters.

Parameters authorizer (GlobusAuthorizer) – An authorizer instance used for all calls to
Globus Transfer

Methods

• add_endpoint_acl_rule()

• add_endpoint_role()

• add_endpoint_server()

• bookmark_list()

• cancel_task()

• create_bookmark()

• create_endpoint()

• create_shared_endpoint()

• delete_bookmark()

28 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/

globus-sdk-python, Release 3.0.0a2

• delete_endpoint()

• delete_endpoint_acl_rule()

• delete_endpoint_role()

• delete_endpoint_server()

• endpoint_acl_list()

• endpoint_activate()

• endpoint_autoactivate()

• endpoint_deactivate()

• endpoint_get_activation_requirements()

• endpoint_manager_acl_list()

• endpoint_manager_cancel_status()

• endpoint_manager_cancel_tasks()

• endpoint_manager_create_pause_rule()

• endpoint_manager_delete_pause_rule()

• endpoint_manager_get_endpoint()

• endpoint_manager_get_pause_rule()

• endpoint_manager_get_task()

• endpoint_manager_hosted_endpoint_list()

• endpoint_manager_monitored_endpoints()

• endpoint_manager_pause_rule_list()

• endpoint_manager_pause_tasks()

• endpoint_manager_resume_tasks()

• endpoint_manager_task_event_list()

• endpoint_manager_task_list()

• endpoint_manager_task_pause_info()

• endpoint_manager_task_skipped_errors()

• endpoint_manager_task_successful_transfers()

• endpoint_manager_update_pause_rule()

• endpoint_role_list()

• endpoint_search()

• endpoint_server_list()

• get_bookmark()

• get_endpoint()

• get_endpoint_acl_rule()

• get_endpoint_role()

• get_endpoint_server()

1.3. Service Clients 29

globus-sdk-python, Release 3.0.0a2

• get_submission_id()

• get_task()

• my_effective_pause_rule_list()

• my_shared_endpoint_list()

• operation_ls()

• operation_mkdir()

• operation_rename()

• operation_symlink()

• submit_delete()

• submit_transfer()

• task_event_list()

• task_list()

• task_pause_info()

• task_skipped_errors()

• task_successful_transfers()

• task_wait()

• update_bookmark()

• update_endpoint()

• update_endpoint_acl_rule()

• update_endpoint_server()

• update_task()

get_endpoint(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.response.GlobusHTTPResponse

GET /endpoint/<endpoint_id>

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> endpoint = tc.get_endpoint(endpoint_id)
>>> print("Endpoint name:",
>>> endpoint["display_name"] or endpoint["canonical_name"])

External Documentation

See Get Endpoint by ID in the REST documentation for details.

update_endpoint(endpoint_id: Union[bytes, str, uuid.UUID], data, **params) →
globus_sdk.response.GlobusHTTPResponse

PUT /endpoint/<endpoint_id>

Return type TransferResponse

Examples

30 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/endpoint/#get_endpoint_by_id

globus-sdk-python, Release 3.0.0a2

>>> tc = globus_sdk.TransferClient(...)
>>> epup = dict(display_name="My New Endpoint Name",
>>> description="Better Description")
>>> update_result = tc.update_endpoint(endpoint_id, epup)

External Documentation

See Update Endpoint by ID in the REST documentation for details.

create_endpoint(data)→ globus_sdk.response.GlobusHTTPResponse
POST /endpoint/<endpoint_id>

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> ep_data = {
>>> "DATA_TYPE": "endpoint",
>>> "display_name": display_name,
>>> "DATA": [
>>> {
>>> "DATA_TYPE": "server",
>>> "hostname": "gridftp.example.edu",
>>> },
>>>],
>>> }
>>> create_result = tc.create_endpoint(ep_data)
>>> endpoint_id = create_result["id"]

External Documentation

See Create endpoint in the REST documentation for details.

delete_endpoint(endpoint_id: Union[bytes, str, uuid.UUID]) →
globus_sdk.response.GlobusHTTPResponse

DELETE /endpoint/<endpoint_id>

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> delete_result = tc.delete_endpoint(endpoint_id)

External Documentation

See Delete endpoint by id in the REST documentation for details.

endpoint_search(filter_fulltext: Optional[str] = None, filter_scope: Op-
tional[str] = None, num_results=25, **params) →
globus_sdk.services.transfer.paging.PaginatedResource

GET /endpoint_search?filter_fulltext=<filter_fulltext>&filter_scope=
→˓<filter_scope>

Parameters

• filter_fulltext (str, optional) – The string to use in a full text search on
endpoints. Effectively, the “search query” which is being requested. May be omitted with
specific filter_scope values.

1.3. Service Clients 31

https://docs.globus.org/api/transfer/endpoint/#update_endpoint_by_id
https://docs.globus.org/api/transfer/endpoint/#create_endpoint
https://docs.globus.org/api/transfer/endpoint/#delete_endpoint_by_id

globus-sdk-python, Release 3.0.0a2

• filter_scope (str, optional) – A “scope” within which to search for endpoints.
This must be one of the limited and known names known to the service, which can be found
documented in the External Documentation below. Defaults to searching all endpoints
(in which case filter_fulltext is required)

• num_results (int or None) – The number of search results to fetch from the ser-
vice. May be set to None to request the maximum allowable number of results. [Default:
25]

• params (dict) – Any additional parameters will be passed through as query params.

Return type PaginatedResource, an iterable of GlobusHTTPResponse

Examples

Search for a given string as a fulltext search:

>>> tc = globus_sdk.TransferClient(...)
>>> for ep in tc.endpoint_search('String to search for!'):
>>> print(ep['display_name'])

Search for a given string, but only on endpoints that you own:

>>> for ep in tc.endpoint_search('foo', filter_scope='my-endpoints'):
>>> print('{0} has ID {1}'.format(ep['display_name'], ep['id']))

Search results are capped at a number of elements equal to the num_results parameter. If you want
more than the default, 25, elements, do like so:

>>> for ep in tc.endpoint_search('String to search for!',
>>> num_results=120):
>>> print(ep['display_name'])

It is important to be aware that the Endpoint Search API limits you to 1000 results for any search query.
You can request the maximum number of results either explicitly, with num_results=1000, or by
stating that you want no limit by setting it to None:

>>> for ep in tc.endpoint_search('String to search for!',
>>> num_results=None):
>>> print(ep['display_name'])

External Documentation

For additional information, see Endpoint Search. in the REST documentation for details.

endpoint_autoactivate(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.response.GlobusHTTPResponse

POST /endpoint/<endpoint_id>/autoactivate

Return type TransferResponse

The following example will try to “auto” activate the endpoint using a credential available from another
endpoint or sign in by the user with the same identity provider, but only if the endpoint is not already
activated or going to expire within an hour (3600 seconds). If that fails, direct the user to the globus
website to perform activation:

Examples

32 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/endpoint_search

globus-sdk-python, Release 3.0.0a2

>>> tc = globus_sdk.TransferClient(...)
>>> r = tc.endpoint_autoactivate(ep_id, if_expires_in=3600)
>>> while (r["code"] == "AutoActivationFailed"):
>>> print("Endpoint requires manual activation, please open "
>>> "the following URL in a browser to activate the "
>>> "endpoint:")
>>> print("https://app.globus.org/file-manager?origin_id=%s"
>>> % ep_id)
>>> input("Press ENTER after activating the endpoint:")
>>> r = tc.endpoint_autoactivate(ep_id, if_expires_in=3600)

This is the recommended flow for most thick client applications, because many endpoints require activation
via OAuth MyProxy, which must be done in a browser anyway. Web based clients can link directly to the
URL.

You also might want messaging or logging depending on why and how the operation succeeded, in which
case you’ll need to look at the value of the “code” field and either decide on your own messaging or use
the response’s “message” field.

>>> tc = globus_sdk.TransferClient(...)
>>> r = tc.endpoint_autoactivate(ep_id, if_expires_in=3600)
>>> if r['code'] == 'AutoActivationFailed':
>>> print('Endpoint({}) Not Active! Error! Source message: {}'
>>> .format(ep_id, r['message']))
>>> sys.exit(1)
>>> elif r['code'] == 'AutoActivated.CachedCredential':
>>> print('Endpoint({}) autoactivated using a cached credential.'
>>> .format(ep_id))
>>> elif r['code'] == 'AutoActivated.GlobusOnlineCredential':
>>> print(('Endpoint({}) autoactivated using a built-in Globus '
>>> 'credential.').format(ep_id))
>>> elif r['code'] = 'AlreadyActivated':
>>> print('Endpoint({}) already active until at least {}'
>>> .format(ep_id, 3600))

External Documentation

See Autoactivate endpoint in the REST documentation for details.

endpoint_deactivate(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.response.GlobusHTTPResponse

POST /endpoint/<endpoint_id>/deactivate

Return type TransferResponse

External Documentation

See Deactive endpoint in the REST documentation for details.

endpoint_activate(endpoint_id: Union[bytes, str, uuid.UUID], requirements_data, **params)→
globus_sdk.response.GlobusHTTPResponse

POST /endpoint/<endpoint_id>/activate

Return type TransferResponse

Consider using autoactivate and web activation instead, described in the example for
endpoint_autoactivate().

External Documentation

See Activate endpoint in the REST documentation for details.

1.3. Service Clients 33

https://docs.globus.org/api/transfer/endpoint_activation/#autoactivate_endpoint
https://docs.globus.org/api/transfer/endpoint_activation/#deactivate_endpoint
https://docs.globus.org/api/transfer/endpoint_activation/#activate_endpoint

globus-sdk-python, Release 3.0.0a2

endpoint_get_activation_requirements(endpoint_id: Union[bytes, str,
uuid.UUID], **params) →
globus_sdk.services.transfer.response.activation.ActivationRequirementsResponse

GET /endpoint/<endpoint_id>/activation_requirements

Return type ActivationRequirementsResponse

External Documentation

See Get activation requirements in the REST documentation for details.

my_effective_pause_rule_list(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.services.transfer.response.iterable.IterableTransferResponse

GET /endpoint/<endpoint_id>/my_effective_pause_rule_list

Return type IterableTransferResponse

External Documentation

See Get my effective endpoint pause rules in the REST documentation for details.

my_shared_endpoint_list(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.services.transfer.response.iterable.IterableTransferResponse

GET /endpoint/<endpoint_id>/my_shared_endpoint_list

Return type IterableTransferResponse

External Documentation

See Get shared endpoint list in the REST documentation for details.

create_shared_endpoint(data)
POST /shared_endpoint

Parameters data (dict) – A python dict representation of a shared_endpoint document

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> shared_ep_data = {
>>> "DATA_TYPE": "shared_endpoint",
>>> "host_endpoint": host_endpoint_id,
>>> "host_path": host_path,
>>> "display_name": display_name,
>>> # optionally specify additional endpoint fields
>>> "description": "my test share"
>>> }
>>> create_result = tc.create_shared_endpoint(shared_ep_data)
>>> endpoint_id = create_result["id"]

External Documentation

See Create shared endpoint in the REST documentation for details.

endpoint_server_list(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.services.transfer.response.iterable.IterableTransferResponse

GET /endpoint/<endpoint_id>/server_list

Return type IterableTransferResponse

External Documentation

See Get endpoint server list in the REST documentation for details.

34 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/endpoint_activation/#get_activation_requirements
https://docs.globus.org/api/transfer/endpoint/#get_endpoint_pause_rules
https://docs.globus.org/api/transfer/endpoint/#get_shared_endpoint_list
https://docs.globus.org/api/transfer/endpoint/#create_shared_endpoint
https://docs.globus.org/api/transfer/endpoint/#get_endpoint_server_list

globus-sdk-python, Release 3.0.0a2

get_endpoint_server(endpoint_id: Union[bytes, str, uuid.UUID], server_id, **params) →
globus_sdk.response.GlobusHTTPResponse

GET /endpoint/<endpoint_id>/server/<server_id>

Return type TransferResponse

External Documentation

See Get endpoint server by id in the REST documentation for details.

add_endpoint_server(endpoint_id: Union[bytes, str, uuid.UUID], server_data: Dict) →
globus_sdk.response.GlobusHTTPResponse

POST /endpoint/<endpoint_id>/server

Return type TransferResponse

External Documentation

See Add endpoint server in the REST documentation for details.

update_endpoint_server(endpoint_id: Union[bytes, str, uuid.UUID], server_id, server_data:
Dict)→ globus_sdk.response.GlobusHTTPResponse

PUT /endpoint/<endpoint_id>/server/<server_id>

Return type TransferResponse

External Documentation

See Update endpoint server by id in the REST documentation for details.

delete_endpoint_server(endpoint_id: Union[bytes, str, uuid.UUID], server_id) →
globus_sdk.response.GlobusHTTPResponse

DELETE /endpoint/<endpoint_id>/server/<server_id>

Return type TransferResponse

External Documentation

See Delete endpoint server by id in the REST documentation for details.

endpoint_role_list(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.services.transfer.response.iterable.IterableTransferResponse

GET /endpoint/<endpoint_id>/role_list

Return type IterableTransferResponse

External Documentation

See Get list of endpoint roles in the REST documentation for details.

add_endpoint_role(endpoint_id: Union[bytes, str, uuid.UUID], role_data: Dict) →
globus_sdk.response.GlobusHTTPResponse

POST /endpoint/<endpoint_id>/role

Return type TransferResponse

External Documentation

See Create endpoint role in the REST documentation for details.

get_endpoint_role(endpoint_id: Union[bytes, str, uuid.UUID], role_id, **params) →
globus_sdk.response.GlobusHTTPResponse

GET /endpoint/<endpoint_id>/role/<role_id>

Return type TransferResponse

External Documentation

See Get endpoint role by id in the REST documentation for details.

1.3. Service Clients 35

https://docs.globus.org/api/transfer/endpoint/#get_endpoint_server_by_id
https://docs.globus.org/api/transfer/endpoint/#add_endpoint_server
https://docs.globus.org/api/transfer/endpoint/#update_endpoint_server_by_id
https://docs.globus.org/api/transfer/endpoint/#delete_endpoint_server_by_id
https://docs.globus.org/api/transfer/endpoint_roles/#role_list
https://docs.globus.org/api/transfer/endpoint_roles/#create_role
https://docs.globus.org/api/transfer/endpoint_roles/#get_endpoint_role_by_id

globus-sdk-python, Release 3.0.0a2

delete_endpoint_role(endpoint_id: Union[bytes, str, uuid.UUID], role_id) →
globus_sdk.response.GlobusHTTPResponse

DELETE /endpoint/<endpoint_id>/role/<role_id>

Return type TransferResponse

External Documentation

See Delete endpoint role by id in the REST documentation for details.

endpoint_acl_list(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.services.transfer.response.iterable.IterableTransferResponse

GET /endpoint/<endpoint_id>/access_list

Return type IterableTransferResponse

External Documentation

See Get list of access rules in the REST documentation for details.

get_endpoint_acl_rule(endpoint_id: Union[bytes, str, uuid.UUID], rule_id, **params) →
globus_sdk.response.GlobusHTTPResponse

GET /endpoint/<endpoint_id>/access/<rule_id>

Return type TransferResponse

External Documentation

See Get access rule by id in the REST documentation for details.

add_endpoint_acl_rule(endpoint_id: Union[bytes, str, uuid.UUID], rule_data: Dict) →
globus_sdk.response.GlobusHTTPResponse

POST /endpoint/<endpoint_id>/access

Parameters

• endpoint_id (str) – ID of endpoint to which to add the acl

• rule_data (dict) – A python dict representation of an access document

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> rule_data = {
>>> "DATA_TYPE": "access",
>>> "principal_type": "identity",
>>> "principal": identity_id,
>>> "path": "/dataset1/",
>>> "permissions": "rw",
>>> }
>>> result = tc.add_endpoint_acl_rule(endpoint_id, rule_data)
>>> rule_id = result["access_id"]

Note that if this rule is being created on a shared endpoint the “path” field is relative to the “host_path” of
the shared endpoint.

External Documentation

See Create access rule in the REST documentation for details.

update_endpoint_acl_rule(endpoint_id: Union[bytes, str, uuid.UUID], rule_id, rule_data:
Dict)→ globus_sdk.response.GlobusHTTPResponse

PUT /endpoint/<endpoint_id>/access/<rule_id>

36 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/endpoint_roles/#delete_endpoint_role_by_id
https://docs.globus.org/api/transfer/acl/#rest_access_get_list
https://docs.globus.org/api/transfer/acl/#get_access_rule_by_id
https://docs.globus.org/api/transfer/acl/#rest_access_create

globus-sdk-python, Release 3.0.0a2

Return type TransferResponse

External Documentation

See Update access rule in the REST documentation for details.

delete_endpoint_acl_rule(endpoint_id: Union[bytes, str, uuid.UUID], rule_id) →
globus_sdk.response.GlobusHTTPResponse

DELETE /endpoint/<endpoint_id>/access/<rule_id>

Return type TransferResponse

External Documentation

See Delete access rule in the REST documentation for details.

bookmark_list(**params)→ globus_sdk.services.transfer.response.iterable.IterableTransferResponse
GET /bookmark_list

Return type IterableTransferResponse

External Documentation

See Get list of bookmarks in the REST documentation for details.

create_bookmark(bookmark_data: Dict)→ globus_sdk.response.GlobusHTTPResponse
POST /bookmark

Return type TransferResponse

External Documentation

See Create bookmark in the REST documentation for details.

get_bookmark(bookmark_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.response.GlobusHTTPResponse

GET /bookmark/<bookmark_id>

Return type TransferResponse

External Documentation

See Get bookmark by id in the REST documentation for details.

update_bookmark(bookmark_id: Union[bytes, str, uuid.UUID], bookmark_data: Dict) →
globus_sdk.response.GlobusHTTPResponse

PUT /bookmark/<bookmark_id>

Return type TransferResponse

External Documentation

See Update bookmark in the REST documentation for details.

delete_bookmark(bookmark_id: Union[bytes, str, uuid.UUID]) →
globus_sdk.response.GlobusHTTPResponse

DELETE /bookmark/<bookmark_id>

Return type TransferResponse

External Documentation

See Delete bookmark by id in the REST documentation for details.

operation_ls(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.services.transfer.response.iterable.IterableTransferResponse

GET /operation/endpoint/<endpoint_id>/ls

Return type IterableTransferResponse

1.3. Service Clients 37

https://docs.globus.org/api/transfer/acl/#update_access_rule
https://docs.globus.org/api/transfer/acl/#delete_access_rule
https://docs.globus.org/api/transfer/endpoint_bookmarks/#get_list_of_bookmarks
https://docs.globus.org/api/transfer/endpoint_bookmarks/#create_bookmark
https://docs.globus.org/api/transfer/endpoint_bookmarks/#get_bookmark_by_id
https://docs.globus.org/api/transfer/endpoint_bookmarks/#update_bookmark
https://docs.globus.org/api/transfer/endpoint_bookmarks/#delete_bookmark_by_id

globus-sdk-python, Release 3.0.0a2

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> for entry in tc.operation_ls(ep_id, path="/~/project1/"):
>>> print(entry["name"], entry["type"])

External Documentation

See List Directory Contents in the REST documentation for details.

operation_mkdir(endpoint_id: Union[bytes, str, uuid.UUID], path, **params) →
globus_sdk.response.GlobusHTTPResponse

POST /operation/endpoint/<endpoint_id>/mkdir

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> tc.operation_mkdir(ep_id, path="/~/newdir/")

External Documentation

See Make Directory in the REST documentation for details.

operation_rename(endpoint_id: Union[bytes, str, uuid.UUID], oldpath, newpath, **params) →
globus_sdk.response.GlobusHTTPResponse

POST /operation/endpoint/<endpoint_id>/rename

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> tc.operation_rename(ep_id, oldpath="/~/file1.txt",
>>> newpath="/~/project1data.txt")

External Documentation

See Rename in the REST documentation for details.

operation_symlink(endpoint_id: Union[bytes, str, uuid.UUID], symlink_target, path, **params)
→ globus_sdk.response.GlobusHTTPResponse

POST /operation/endpoint/<endpoint_id>/symlink

Return type TransferResponse

The path is the name of the symlink, and the symlink_target is the path referenced by the symlink.

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> tc.operation_symlink(ep_id, symlink_target="/~/file1.txt",
>>> path="/~/link-to-file1.txt")

External Documentation

See Symlink in the REST documentation for details.

get_submission_id(**params)→ globus_sdk.response.GlobusHTTPResponse
GET /submission_id

Return type TransferResponse

38 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/file_operations/#list_directory_contents
https://docs.globus.org/api/transfer/file_operations/#make_directory
https://docs.globus.org/api/transfer/file_operations/#rename
https://docs.globus.org/api/transfer/file_operations/#symlink

globus-sdk-python, Release 3.0.0a2

Submission IDs are required to submit tasks to the Transfer service via the submit_transfer and
submit_delete methods.

Most users will not need to call this method directly, as the convenience classes TransferData and
DeleteData will call it automatically if they are not passed a submission_id explicitly.

External Documentation

See Get a submission id in the REST documentation for more details.

submit_transfer(data)→ globus_sdk.response.GlobusHTTPResponse
POST /transfer

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> tdata = globus_sdk.TransferData(tc, source_endpoint_id,
>>> destination_endpoint_id,
>>> label="SDK example",
>>> sync_level="checksum")
>>> tdata.add_item("/source/path/dir/", "/dest/path/dir/",
>>> recursive=True)
>>> tdata.add_item("/source/path/file.txt",
>>> "/dest/path/file.txt")
>>> transfer_result = tc.submit_transfer(tdata)
>>> print("task_id =", transfer_result["task_id"])

The data parameter can be a normal Python dictionary, or a TransferData object.

External Documentation

See Submit a transfer task in the REST documentation for more details.

submit_delete(data)→ globus_sdk.response.GlobusHTTPResponse
POST /delete

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> ddata = globus_sdk.DeleteData(tc, endpoint_id, recursive=True)
>>> ddata.add_item("/dir/to/delete/")
>>> ddata.add_item("/file/to/delete/file.txt")
>>> delete_result = tc.submit_delete(ddata)
>>> print("task_id =", delete_result["task_id"])

The data parameter can be a normal Python dictionary, or a DeleteData object.

External Documentation

See Submit a delete task in the REST documentation for details.

task_list(num_results=10, **params)→ globus_sdk.services.transfer.paging.PaginatedResource
Get an iterable of task documents owned by the current user.

GET /task_list

Parameters

• num_results (int or none) – The number of tasks to fetch from the service. May
be set to None to request the maximum allowable number of results. [Default: 10]

1.3. Service Clients 39

https://docs.globus.org/api/transfer/task_submit/#get_submission_id
https://docs.globus.org/api/transfer/task_submit/#submit_transfer_task
https://docs.globus.org/api/transfer/task_submit/#submit_delete_task

globus-sdk-python, Release 3.0.0a2

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type PaginatedResource, an iterable of GlobusHTTPResponse

Examples

Fetch the default number (10) of tasks and print some basic info:

>>> tc = TransferClient(...)
>>> for task in tc.task_list():
>>> print("Task({}): {} -> {}".format(
>>> task["task_id"], task["source_endpoint"],
>>> task["destination_endpoint"]))

External Documentation

See Task list in the REST documentation for details.

task_event_list(task_id: Union[bytes, str, uuid.UUID], num_results=10, **params) →
globus_sdk.services.transfer.paging.PaginatedResource

List events (for example, faults and errors) for a given Task.

GET /task/<task_id>/event_list

Parameters

• task_id (str) – The ID of the task to inspect.

• num_results (int or None) – The number of events to fetch from the service. May
be set to None to request the maximum allowable number of results. [Default: 10]

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type PaginatedResource, an iterable of GlobusHTTPResponse

Examples

Fetch the default number (10) of events and print some basic info:

>>> tc = TransferClient(...)
>>> task_id = ...
>>> for event in tc.task_event_list(task_id):
>>> print("Event on Task({}) at {}:\n{}".format(
>>> task_id, event["time"], event["description"])

External Documentation

See Get event list in the REST documentation for details.

get_task(task_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.response.GlobusHTTPResponse

GET /task/<task_id>

Return type TransferResponse

External Documentation

See Get task by id in the REST documentation for details.

update_task(task_id: Union[bytes, str, uuid.UUID], data: Dict, **params) →
globus_sdk.response.GlobusHTTPResponse

PUT /task/<task_id>

Return type TransferResponse

40 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/task/#get_task_list
https://docs.globus.org/api/transfer/task/#get_event_list
https://docs.globus.org/api/transfer/task/#get_task_by_id

globus-sdk-python, Release 3.0.0a2

External Documentation

See Update task by id in the REST documentation for details.

cancel_task(task_id: Union[bytes, str, uuid.UUID])→ globus_sdk.response.GlobusHTTPResponse
POST /task/<task_id>/cancel

Return type TransferResponse

External Documentation

See Cancel task by id in the REST documentation for details.

task_wait(task_id: Union[bytes, str, uuid.UUID], timeout=10, polling_interval=10)→ bool
Wait until a Task is complete or fails, with a time limit. If the task is “ACTIVE” after time runs out, returns
False. Otherwise returns True.

Parameters

• task_id (str) – ID of the Task to wait on for completion

• timeout (int, optional) – Number of seconds to wait in total. Minimum 1. [De-
fault: 10]

• polling_interval (int, optional) – Number of seconds between queries to
Globus about the Task status. Minimum 1. [Default: 10]

Examples

If you want to wait for a task to terminate, but want to warn every minute that it doesn’t terminate, you
could:

>>> tc = TransferClient(...)
>>> while not tc.task_wait(task_id, timeout=60):
>>> print("Another minute went by without {0} terminating"
>>> .format(task_id))

Or perhaps you want to check on a task every minute for 10 minutes, and give up if it doesn’t complete in
that time:

>>> tc = TransferClient(...)
>>> done = tc.task_wait(task_id, timeout=600, polling_interval=60):
>>> if not done:
>>> print("{0} didn't successfully terminate!"
>>> .format(task_id))
>>> else:
>>> print("{0} completed".format(task_id))

You could print dots while you wait for a task by only waiting one second at a time:

>>> tc = TransferClient(...)
>>> while not tc.task_wait(task_id, timeout=1, polling_interval=1):
>>> print(".", end="")
>>> print("\n{0} completed!".format(task_id))

task_pause_info(task_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.response.GlobusHTTPResponse

GET /task/<task_id>/pause_info

Return type TransferResponse

External Documentation

See Get task pause info in the REST documentation for details.

1.3. Service Clients 41

https://docs.globus.org/api/transfer/task/#update_task_by_id
https://docs.globus.org/api/transfer/task/#cancel_task_by_id
https://docs.globus.org/api/transfer/task/#get_task_pause_info

globus-sdk-python, Release 3.0.0a2

task_successful_transfers(task_id: Union[bytes, str, uuid.UUID],
num_results=100, **params) →
globus_sdk.services.transfer.paging.PaginatedResource

Get the successful file transfers for a completed Task.

Note: Only files that were actually transferred are included. This does not include directories, files that
were checked but skipped as part of a sync transfer, or files which were skipped due to skip_source_errors
being set on the task.

GET /task/<task_id>/successful_transfers

Parameters

• task_id (str) – The ID of the task to inspect.

• num_results (int or None, optional) – The number of file transfer records to
fetch from the service. May be set to None to request the maximum allowable number of
results. [Default: 100]

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type PaginatedResource, an iterable of GlobusHTTPResponse

Examples

Fetch all transferred files for a task and print some basic info:

>>> tc = TransferClient(...)
>>> task_id = ...
>>> for info in tc.task_successful_transfers(task_id):
>>> print("{} -> {}".format(
>>> info["source_path"], info["destination_path"]))

External Documentation

See Get Task Successful Transfers in the REST documentation for details.

task_skipped_errors(task_id: Union[bytes, str, uuid.UUID], num_results=100, **params) →
globus_sdk.services.transfer.paging.PaginatedResource

Get path and error information for all paths that were skipped due to skip_source_errors being set on a
completed transfer Task.

GET /task/<task_id>/skipped_errors

Parameters

• task_id (str) – The ID of the task to inspect.

• num_results (int or None, optional) – The number of file transfer records to
fetch from the service. May be set to None to request the maximum allowable number of
results. [Default: 100]

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type PaginatedResource, an iterable of GlobusHTTPResponse

Examples

Fetch all skipped errors for a task and print some basic info:

42 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/task/#get_task_successful_transfers

globus-sdk-python, Release 3.0.0a2

>>> tc = TransferClient(...)
>>> task_id = ...
>>> for info in tc.task_skipped_errors(task_id):
>>> print("{} -> {}".format(
>>> info["error_code"], info["source_path"]))

External Documentation

See Get Task Skipped Errors in the REST documentation for details.

endpoint_manager_monitored_endpoints(**params)→ globus_sdk.services.transfer.response.iterable.IterableTransferResponse
Get endpoints the current user is a monitor or manager on.

GET endpoint_manager/monitored_endpoints

Return type iterable of GlobusHTTPResponse

See Get monitored endpoints in the REST documentation for details.

endpoint_manager_hosted_endpoint_list(endpoint_id: Union[bytes, str,
uuid.UUID], **params) →
globus_sdk.services.transfer.response.iterable.IterableTransferResponse

Get shared endpoints hosted on the given endpoint.

GET /endpoint_manager/endpoint/<endpoint_id>/hosted_endpoint_list

Return type iterable of GlobusHTTPResponse

See Get hosted endpoint list in the REST documentation for details.

endpoint_manager_get_endpoint(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.response.GlobusHTTPResponse

Get endpoint details as an admin.

GET /endpoint_manager/endpoint/<endpoint_id>

Return type TransferResponse

External Documentation

See Get endpoint as admin in the REST documentation for details.

endpoint_manager_acl_list(endpoint_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.services.transfer.response.iterable.IterableTransferResponse

Get a list of access control rules on specified endpoint as an admin.

GET endpoint_manager/endpoint/<endpoint_id>/access_list

Return type IterableTransferResponse

External Documentation

See Get endpoint access list as admin in the REST documentation for details.

endpoint_manager_task_list(num_results=10, **params) →
globus_sdk.services.transfer.paging.PaginatedResource

Get a list of tasks visible via activity_monitor role, as opposed to tasks owned by the current user.

GET endpoint_manager/task_list

Parameters

• num_results (int or None, optional) – The number of tasks to fetch from
the service. May be set to None to request the maximum allowable number of results.
[Default: 10]

1.3. Service Clients 43

https://docs.globus.org/api/transfer/task/#get_task_skipped_errors
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_monitored_endpoints
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_hosted_endpoint_list
https://docs.globus.org/api/transfer/advanced_endpoint_management/#mc_get_endpoint
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_endpoint_access_list_as_admin

globus-sdk-python, Release 3.0.0a2

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type PaginatedResource, an iterable of GlobusHTTPResponse

Filters

The following filters are supported (passed as keyword arguments in params). For any query that doesn’t
specify a filter_status that is a subset of (“ACTIVE”, “INACTIVE”), at least one of filter_task_id or fil-
ter_endpoint is required.

Query
Pa-
ram-
e-
ter

Fil-
ter
Type

Description

fil-
ter_status

equal-
ity
list

Comma separated list of task statuses. Return only tasks with any of the specified statuses.
Note that in-progress tasks will have status “ACTIVE” or “INACTIVE”, and completed
tasks will have status “SUCCEEDED” or “FAILED”.

fil-
ter_task_id

equal-
ity
list

Comma separated list of task_ids, limit 50. Return only tasks with any of the specified
ids. If any of the specified tasks do not involve an endpoint the user has an appropriate
role for, a PermissionDenied error will be returned. This filter can’t be combined
with any other filter. If another filter is passed, a BadRequest will be returned.

fil-
ter_owner_id

equal-
ity

A Globus Auth identity id. Limit results to tasks submitted by the specified identity, or
linked to the specified identity, at submit time. Returns UserNotFound if the identity
does not exist or has never used the Globus Transfer service. If no tasks were submit-
ted by this user to an endpoint the current user has an appropriate role on, an empty
result set will be returned. Unless filtering for running tasks (i.e. filter_status is
a subset of (“ACTIVE”, “INACTIVE”), filter_endpoint is required when using
filter_owner_id.

fil-
ter_endpoint

equal-
ity

Single endpoint id or canonical name. Using canonical name is deprecated. Return only
tasks with a matching source or destination endpoint or matching source or destination
host endpoint.

fil-
ter_is_paused

boolean
equal-
ity

Return only tasks with the specified is_paused value. Requires that
filter_status is also passed and contains a subset of “ACTIVE” and “INAC-
TIVE”. Completed tasks always have is_paused equal to “false” and filtering on their
paused state is not useful and not supported. Note that pausing is an async operation,
and after a pause rule is inserted it will take time before the is_paused flag is set on all
affected tasks. Tasks paused by id will have the is_paused flag set immediately.

fil-
ter_completion_time

date-
time
range

Start and end date-times separated by a comma. Each datetime should be specified as a
string in ISO 8601 format: YYYY-MM-DDTHH:MM:SS, where the “T” separating date
and time is literal, with optional +/-HH:MM for timezone. If no timezone is specified,
UTC is assumed, or a trailing “Z” can be specified to make UTC explicit. A space can be
used between the date and time instead of a space. A blank string may be used for either
the start or end (but not both) to indicate no limit on that side. Returns only complete
tasks with completion_time in the specified range. If the end date is blank, it will
also include all active tasks, since they will complete some time in the future.

fil-
ter_min_faults

int Minimum number of cumulative faults, inclusive. Return only tasks with faults >=
N, where N is the filter value. Use filter_min_faults=1 to find all tasks with at
least one fault. Note that many errors are not fatal and the task may still be successful
even if faults >= 1.

fil-
ter_local_user

equal-
ity

A valid username for the target system running the endpoint, as a utf8 encoded string.
Requires that filter_endpoint is also set. Return only tasks that have successfully
fetched the local user from the endpoint, and match the values of filter_endpoint
and filter_local_user on the source or on the destination.

44 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

Examples

Fetch the default number (10) of tasks and print some basic info:

>>> tc = TransferClient(...)
>>> for task in tc.endpoint_manager_task_list(filter_status="ACTIVE"):
>>> print("Task({}): {} -> {}\n was submitted by\n {}".format(
>>> task["task_id"], task["source_endpoint"],
>>> task["destination_endpoint"], task["owner_string"]))

Do that same operation on all tasks visible via activity_monitor status:

>>> tc = TransferClient(...)
>>> for task in tc.endpoint_manager_task_list(
>>> num_results=None, filter_status="ACTIVE"
>>>):
>>> print("Task({}): {} -> {}\n was submitted by\n {}".format(
>>> task["task_id"], task["source_endpoint"],
>>> task["destination_endpoint"], task["owner_string"]))

External Documentation

See Advanced Endpoint Management: Get tasks in the REST documentation for details.

endpoint_manager_get_task(task_id: Union[bytes, str, uuid.UUID], **params)
Get task info as an admin. Requires activity monitor effective role on the destination endpoint of the task.

GET /endpoint_manager/task/<task_id>

Return type TransferResponse

External Documentation

See Get task as admin in the REST documentation for details.

endpoint_manager_task_event_list(task_id: Union[bytes, str, uuid.UUID],
num_results=10, **params) →
globus_sdk.services.transfer.paging.PaginatedResource

List events (for example, faults and errors) for a given task as an admin. Requires activity monitor effective
role on the destination endpoint of the task.

GET /task/<task_id>/event_list

Parameters

• task_id (str) – The ID of the task to inspect.

• num_results (int or None, optional) – The number of events to fetch from
the service. May be set to None to request the maximum allowable number of results.
[Default: 10]

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type PaginatedResource, an iterable of GlobusHTTPResponse

External Documentation

See Get task events as admin in the REST documentation for details.

endpoint_manager_task_pause_info(task_id: Union[bytes, str, uuid.UUID], **params) →
globus_sdk.response.GlobusHTTPResponse

Get details about why a task is paused as an admin. Requires activity monitor effective role on the desti-
nation endpoint of the task.

1.3. Service Clients 45

https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_tasks
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_task
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_task_events

globus-sdk-python, Release 3.0.0a2

GET /endpoint_manager/task/<task_id>/pause_info

Return type TransferResponse

External Documentation

See Get task pause info as admin in the REST documentation for details.

endpoint_manager_task_successful_transfers(task_id: Union[bytes, str, uuid.UUID],
num_results=100, **params) →
globus_sdk.services.transfer.paging.PaginatedResource

Get the successful file transfers for a completed Task as an admin.

GET /endpoint_manager/task/<task_id>/successful_transfers

Parameters

• task_id (str) – The ID of the task to inspect.

• num_results (int or None, optional) – The number of file transfer records to
fetch from the service. May be set to None to request the maximum allowable number of
results. [Default: 100]

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type PaginatedResource, an iterable of GlobusHTTPResponse

External Documentation

See Get task successful transfers as admin in the REST documentation for details.

endpoint_manager_task_skipped_errors(task_id: Union[bytes, str, uuid.UUID],
num_results=100, **params) →
globus_sdk.services.transfer.paging.PaginatedResource

Get skipped errors for a completed Task as an admin.

GET /endpoint_manager/task/<task_id>/skipped_errors

Parameters

• task_id (str) – The ID of the task to inspect.

• num_results (int or None, optional) – The number of skipped error records
to fetch from the service. May be set to None to request the maximum allowable number
of results. [Default: 100]

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type PaginatedResource, an iterable of GlobusHTTPResponse

External Documentation

See Get task skipped errors as admin in the REST documentation for details.

endpoint_manager_cancel_tasks(task_ids: Iterable[Union[bytes, str, uuid.UUID]], message,
**params)→ globus_sdk.response.GlobusHTTPResponse

Cancel a list of tasks as an admin. Requires activity manager effective role on the task(s) source or desti-
nation endpoint(s).

POST /endpoint_manager/admin_cancel

Parameters

• task_ids (iterable of str) – List of task ids to cancel.

46 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_task_pause_info_as_admin
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_task_successful_transfers_as_admin
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_task_skipped_errors_as_admin

globus-sdk-python, Release 3.0.0a2

• message (str) – Message given to all users who’s tasks have been canceled.

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type TransferResponse

External Documentation

See Cancel tasks as admin in the REST documentation for details.

endpoint_manager_cancel_status(admin_cancel_id, **params) →
globus_sdk.response.GlobusHTTPResponse

Get the status of an an admin cancel (result of endpoint_manager_cancel_tasks).

GET /endpoint_manager/admin_cancel/<admin_cancel_id>

Parameters

• admin_cancel_id (str) – The ID of the the cancel job to inspect.

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type TransferResponse

External Documentation

See Get cancel status by id in the REST documentation for details.

endpoint_manager_pause_tasks(task_ids: Iterable[Union[bytes, str, uuid.UUID]], message,
**params)→ globus_sdk.response.GlobusHTTPResponse

Pause a list of tasks as an admin. Requires activity manager effective role on the task(s) source or destina-
tion endpoint(s).

POST /endpoint_manager/admin_pause

Parameters

• task_ids (iterable of str) – List of task ids to pause.

• message (str) – Message given to all users who’s tasks have been paused.

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type TransferResponse

External Documentation

See Pause tasks as admin in the REST documentation for details.

endpoint_manager_resume_tasks(task_ids: Iterable[Union[bytes, str, uuid.UUID]],
**params)→ globus_sdk.response.GlobusHTTPResponse

Resume a list of tasks as an admin. Requires activity manager effective role on the task(s) source or
destination endpoint(s).

POST /endpoint_manager/admin_resume

Parameters

• task_ids (iterable of str) – List of task ids to resume.

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type TransferResponse

1.3. Service Clients 47

https://docs.globus.org/api/transfer/advanced_endpoint_management/#admin_cancel
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_cancel_status_by_id
https://docs.globus.org/api/transfer/advanced_endpoint_management/#pause_tasks_as_admin

globus-sdk-python, Release 3.0.0a2

External Documentation

See Resume tasks as admin in the REST documentation for details.

endpoint_manager_pause_rule_list(filter_endpoint: Optional[Union[bytes, str,
uuid.UUID]] = None, **params) →
globus_sdk.services.transfer.response.iterable.IterableTransferResponse

Get a list of pause rules on endpoints that the current user has the activity monitor effective role on.

GET /endpoint_manager/pause_rule_list

Parameters

• filter_endpoint (str) – An endpoint ID. Limit results to rules on endpoints hosted
by this endpoint. Must be activity monitor on this endpoint, not just the hosted endpoints.

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type IterableTransferResponse

External Documentation

See Get pause rules in the REST documentation for details.

endpoint_manager_create_pause_rule(data)→ globus_sdk.response.GlobusHTTPResponse
Create a new pause rule. Requires the activity manager effective role on the endpoint defined in the rule.

POST /endpoint_manager/pause_rule

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> rule_data = {
>>> "DATA_TYPE": "pause_rule",
>>> "message": "Message to users explaining why tasks are paused",
>>> "endpoint_id": "339abc22-aab3-4b45-bb56-8d40535bfd80",
>>> "identity_id": None, # affect all users on endpoint
>>> "start_time": None # start now
>>> }
>>> create_result = tc.endpoint_manager_create_pause_rule(ep_data)
>>> rule_id = create_result["id"]

External Documentation

See Create pause rule in the REST documentation for details.

endpoint_manager_get_pause_rule(pause_rule_id, **params) →
globus_sdk.response.GlobusHTTPResponse

Get an existing pause rule by ID. Requires the activity manager effective role on the endpoint defined in
the rule.

GET /endpoint_manager/pause_rule/<pause_rule_id>

Parameters

• pause_rule_id (str) – ID of pause rule to get.

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type TransferResponse

48 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/advanced_endpoint_management/#resume_tasks_as_admin
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_pause_rules
https://docs.globus.org/api/transfer/advanced_endpoint_management/#create_pause_rule

globus-sdk-python, Release 3.0.0a2

External Documentation

See Get pause rule in the REST documentation for details.

endpoint_manager_update_pause_rule(pause_rule_id, data) →
globus_sdk.response.GlobusHTTPResponse

Update an existing pause rule by ID. Requires the activity manager effective role on the endpoint defined
in the rule. Note that non update-able fields in data will be ignored.

PUT /endpoint_manager/pause_rule/<pause_rule_id>

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> rule_data = {
>>> "message": "Update to pause, reads are now allowed.",
>>> "pause_ls": False,
>>> "pause_task_transfer_read": False
>>> }
>>> update_result = tc.endpoint_manager_update_pause_rule(ep_data)

External Documentation

See Update pause rule in the REST documentation for details.

endpoint_manager_delete_pause_rule(pause_rule_id, **params) →
globus_sdk.response.GlobusHTTPResponse

Delete an existing pause rule by ID. Requires the user to see the “editible” field of the rule as True. Any
tasks affected by this rule will no longer be once it is deleted.

DELETE /endpoint_manager/pause_rule/<pause_rule_id>

Parameters

• pause_rule_id (str) – The ID of the pause rule to delete.

• params (dict, optional) – Any additional parameters will be passed through as
query params.

Return type TransferResponse

External Documentation

See Delete pause rule in the REST documentation for details.

Helper Objects

These helper objects make it easier to correctly create data for consumption by a TransferClient.

class globus_sdk.TransferData(transfer_client, source_endpoint, destination_endpoint, la-
bel=None, submission_id=None, sync_level=None, ver-
ify_checksum=False, preserve_timestamp=False, en-
crypt_data=False, deadline=None, skip_source_errors=False,
fail_on_quota_errors=False, recursive_symlinks='ignore',
**kwargs)

Bases: dict

Convenience class for constructing a transfer document, to use as the data parameter to submit_transfer.

At least one item must be added using add_item.

1.3. Service Clients 49

https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_pause_rule
https://docs.globus.org/api/transfer/advanced_endpoint_management/#update_pause_rule
https://docs.globus.org/api/transfer/advanced_endpoint_management/#delete_pause_rule

globus-sdk-python, Release 3.0.0a2

If submission_id isn’t passed, one will be fetched automatically. The submission ID can be pulled out of
here to inspect, but the document can be used as-is multiple times over to retry a potential submission failure
(so there shouldn’t be any need to inspect it).

Parameters

• transfer_client (TransferClient) – A TransferClient instance which will
be used to get a submission ID if one is not supplied. Should be the same instance that is
used to submit the transfer.

• source_endpoint (str) – The endpoint ID of the source endpoint

• destination_endpoint (str) – The endpoint ID of the destination endpoint

• label (str, optional) – A string label for the Task

• submission_id (str, optional) – A submission ID value fetched
via get_submission_id . Defaults to using transfer_client.
get_submission_id

• sync_level (int or str, optional) – The method used to compare items
between the source and destination. One of "exists", "size", "mtime", or
"checksum" See the section below on sync-level for an explanation of values.

• verify_checksum (bool, optional) – When true, after transfer verify that the
source and destination file checksums match. If they don’t, re-transfer the entire file and
keep trying until it succeeds. This will create CPU load on both the origin and destination
of the transfer, and may even be a bottleneck if the network speed is high enough. [default:
False]

• preserve_timestamp (bool, optional) – When true, Globus Transfer will at-
tempt to set file timestamps on the destination to match those on the origin. [default:
False]

• encrypt_data (bool, optional) – When true, all files will be TLS-protected during
transfer. [default: False]

• deadline (str or datetime, optional) – An ISO-8601 timestamp (as a string)
or a datetime object which defines a deadline for the transfer. At the deadline, even if the data
transfer is not complete, the job will be canceled. We recommend ensuring that the times-
tamp is in UTC to avoid confusion and ambiguity. Examples of ISO-8601 timestamps in-
clude 2017-10-12 09:30Z, 2017-10-12 12:33:54+00:00, and 2017-10-12

• recursive_symlinks (str) – Specify the behavior of recursive directory transfers
when encountering symlinks. One of "ignore", "keep", or "copy". "ignore"
skips symlinks, "keep" creates symlinks at the destination matching the source (without
modifying the link path at all), and "copy" follows symlinks on the source, failing if the
link is invalid. [default: "ignore"]

• skip_source_errors (bool, optional) – When true, source permission denied
and file not found errors from the source endpoint will cause the offending path to be
skipped. [default: False]

• fail_on_quota_errors (bool, optional) – When true, quota exceeded errors
will cause the task to fail. [default: False]

Any additional parameters are fed into the dict being created verbatim.

Sync Levels

The values for sync_level are used to determine how comparisons are made between files found both on the
source and the destination. When files match, no data transfer will occur.

50 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

For compatibility, this can be an integer 0, 1, 2, or 3 in addition to the string values.

The meanings are as follows:

value behavior
0,
exists

Determine whether or not to transfer based on file existence. If the destination file is absent, do
the transfer.

1,
size

Determine whether or not to transfer based on the size of the file. If destination file size does not
match the source, do the transfer.

2,
mtime

Determine whether or not to transfer based on modification times. If source has a newer modififed
time than the destination, do the transfer.

3,
checksum

Determine whether or not to transfer based on checksums of file contents. If source and destina-
tion contents differ, as determined by a checksum of their contents, do the transfer.

Examples

See the submit_transfer documentation for example usage.

External Documentation

See the Task document definition and Transfer specific fields in the REST documentation for more details on
Transfer Task documents.

Methods

• add_item()

• add_symlink_item()

add_item(source_path, destination_path, recursive=False, external_checksum=None, check-
sum_algorithm=None, **params)

Add a file or directory to be transfered. If the item is a symlink to a file or directory, the file or directory at
the target of the symlink will be transfered.

Appends a transfer_item document to the DATA key of the transfer document.

Note: The full path to the destination file must be provided for file items. Parent directories of files are
not allowed. See task submission documentation for more details.

Parameters

• source_path (str) – Path to the source directory or file to be transfered

• destination_path (str) – Path to the source directory or file will be transfered to

• recursive (bool) – Set to True if the target at source path is a directory

• external_checksum (str, optional) – A checksum to verify both source file
and destination file integrity. The checksum will be verified after the data transfer and a
failure will cause the entire task to fail. Cannot be used with directories. Assumed to be
an MD5 checksum unless checksum_algorithm is also given.

• checksum_algorithm (str, optional) – Specifies the checksum algorithm to
be used when verify_checksum is True, sync_level is “checksum” or 3, or an exter-
nal_checksum is given.

add_symlink_item(source_path, destination_path)
Add a symlink to be transfered as a symlink rather than as the target of the symlink.

Appends a transfer_symlink_item document to the DATA key of the transfer document.

1.3. Service Clients 51

https://docs.globus.org/api/transfer/task_submit/#document_types
https://docs.globus.org/api/transfer/task_submit/#transfer_specific_fields
https://docs.globus.org/api/transfer/task_submit/#submit_transfer_task

globus-sdk-python, Release 3.0.0a2

Parameters

• source_path (str) – Path to the source symlink

• destination_path (str) – Path to which the source symlink will be transfered

class globus_sdk.DeleteData(transfer_client, endpoint, label=None, submission_id=None, recur-
sive=False, deadline=None, **kwargs)

Bases: dict

Convenience class for constructing a delete document, to use as the data parameter to submit_delete.

At least one item must be added using add_item.

If submission_id isn’t passed, one will be fetched automatically. The submission ID can be pulled out of
here to inspect, but the document can be used as-is multiple times over to retry a potential submission failure
(so there shouldn’t be any need to inspect it).

Parameters

• transfer_client (TransferClient) – A TransferClient instance which will
be used to get a submission ID if one is not supplied. Should be the same instance that is
used to submit the deletion.

• endpoint (str) – The endpoint ID which is targeted by this deletion Task

• label (str, optional) – A string label for the Task

• submission_id (str, optional) – A submission ID value fetched
via get_submission_id. Defaults to using transfer_client.
get_submission_id

• recursive (bool) – Recursively delete subdirectories on the target endpoint [default:
False]

• deadline (str or datetime, optional) – An ISO-8601 timestamp (as a string)
or a datetime object which defines a deadline for the deletion. At the deadline, even
if the data deletion is not complete, the job will be canceled. We recommend ensur-
ing that the timestamp is in UTC to avoid confusion and ambiguity. Examples of ISO-
8601 timestamps include 2017-10-12 09:30Z, 2017-10-12 12:33:54+00:00,
and 2017-10-12

Examples

See the submit_delete documentation for example usage.

External Documentation

See the Task document definition and Delete specific fields in the REST documentation for more details on
Delete Task documents.

Methods

• add_item()

• add_symlink_item()

add_item(path, **params)
Add a file or directory or symlink to be deleted. If any of the paths are directories, recursive must be
set True on the top level DeleteData. Symlinks will never be followed, only deleted.

Appends a delete_item document to the DATA key of the delete document.

52 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/task_submit/#document_types
https://docs.globus.org/api/transfer/task_submit/#delete_specific_fields

globus-sdk-python, Release 3.0.0a2

Client Errors

When an error occurs, a TransferClient will raise this specialized type of error, rather than a generic
GlobusAPIError.

class globus_sdk.TransferAPIError(r)
Bases: globus_sdk.exc.GlobusAPIError

Error class for the Transfer API client. In addition to the inherited code and message instance variables,
provides:

Variables request_id – Unique identifier for the request, which should be provided when con-
tacting support@globus.org.

Transfer Responses

class globus_sdk.services.transfer.response.ActivationRequirementsResponse(*args,
**kwargs)

Bases: globus_sdk.response.GlobusHTTPResponse

Response class for Activation Requirements responses.

All Activation Requirements documents refer to a specific Endpoint, from whence they were acquired. Refer-
ences to “the Endpoint” implicitly refer to that originating Endpoint, and not to some other Endpoint.

External Documentation

See Activation Requirements Document in the API documentation for details.

active_until(time_seconds: int, relative_time: bool = True)→ bool
Check if the Endpoint will be active until some time in the future, given as an integer number of seconds.
When relative_time=False, the time_seconds is interpreted as a POSIX timestamp.

This supports queries using both relative and absolute timestamps to better support a wide range of use
cases. For example, if I have a task that I know will typically take N seconds, and I want an M second
safety margin:

>>> num_secs_allowed = N + M
>>> tc = TransferClient(...)
>>> reqs_doc = tc.endpoint_get_activation_requirements(...)
>>> if not reqs_doc.active_until(num_secs_allowed):
>>> raise Exception("Endpoint won't be active long enough")
>>> ...

or, alternatively, if I know that the endpoint must be active until October 18th, 2016 for my tasks to
complete:

>>> oct18_2016 = 1476803436
>>> tc = TransferClient(...)
>>> reqs_doc = tc.endpoint_get_activation_requirements(...)
>>> if not reqs_doc.active_until(oct18_2016, relative_time=False):
>>> raise Exception("Endpoint won't be active long enough")
>>> ...

Parameters

• time_seconds (int) – Number of seconds into the future.

1.3. Service Clients 53

mailto:support@globus.org
https://docs.globus.org/api/transfer/endpoint_activation/#activation_requirements_document

globus-sdk-python, Release 3.0.0a2

• relative_time (bool) – Defaults to True. When False, time_seconds is treated
as a POSIX timestamp (i.e. seconds since epoch as an integer) instead of its ordinary
behavior.

Returns True if the Endpoint will be active until the deadline, False otherwise

Return type bool

property always_activated
Returns True if the endpoint activation never expires (e.g. shared endpoints, globus connect personal
endpoints).

Return type bool

property supports_auto_activation
Check if the document lists Auto-Activation as an available type of activation. Typically good to use when
you need to catch endpoints that require web activation before proceeding.

>>> endpoint_id = "..."
>>> tc = TransferClient(...)
>>> reqs_doc = tc.endpoint_get_activation_requirements(endpoint_id)
>>> if not reqs_doc.supports_auto_activation:
>>> # use `from __future__ import print_function` in py2
>>> print(("This endpoint requires web activation. "
>>> "Please login and activate the endpoint here:\n"
>>> "https://app.globus.org/file-manager?origin_id={}")
>>> .format(endpoint_id), file=sys.stderr)
>>> # py3 calls it `input()` in py2, use `raw_input()`
>>> input("Please Hit Enter When You Are Done")

Return type bool

property supports_web_activation
Check if the document lists known types of activation that can be done through the web.
If this returns False, it means that the endpoint is of a highly unusual type, and you
should directly inspect the response’s data attribute to see what is required. Send-
ing users to the web page for activation is also a fairly safe action to take. Note
that ActivationRequirementsResponse.supports_auto_activation directly implies
ActivationRequirementsResponse.supports_web_activation, so these are not exclu-
sive.

For example,

>>> tc = TransferClient(...)
>>> reqs_doc = tc.endpoint_get_activation_requirements(...)
>>> if not reqs_doc.supports_web_activation:
>>> # use `from __future__ import print_function` in py2
>>> print("Highly unusual endpoint. " +
>>> "Cannot webactivate. Raw doc: " +
>>> str(reqs_doc), file=sys.stderr)
>>> print("Sending user to web anyway, just in case.",
>>> file=sys.stderr)
>>> ...

Return type bool

54 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

class globus_sdk.services.transfer.response.IterableTransferResponse(response:
Union[requests.models.Response,
GlobusHTTPRe-
sponse],
client:
Op-
tional[BaseClient]
=
None)

Bases: globus_sdk.response.GlobusHTTPResponse

Response class for non-paged list oriented resources. Allows top level fields to be accessed normally via stan-
dard item access, and also provides a convenient way to iterate over the sub-item list in the DATA key:

>>> print("Path:", r["path"])
>>> # Equivalent to: for item in r["DATA"]
>>> for item in r:
>>> print(item["name"], item["type"])

PaginatedResource Responses

The PaginatedResource class should not typically be instantiated directly, but is returned from several
TransferClient methods. It is an iterable of GlobusRepsonse objects.

class globus_sdk.services.transfer.paging.PaginatedResource(client_method,
path, client_kwargs,
num_results=None,
max_results_per_call=1000,
max_total_results=None,
offset=0, pag-
ing_style=0)

Bases: object

A PaginatedResource is an iterable response which implements the Python iterator interface. As such,
you can only iterate over PaginatedResources once. Future iterations will be empty.

If you need fresh results, make a call for a new PaginatedResource, and if you want to cache and reuse
results, convert to a list or other structure. You may also want to read the docs on the data property.

Because paginated data can be large, you will tend to get the best performance by being sure to only iterate over
the results once.

property data
To get the “data” on a PaginatedResource, fetch all pages and convert them into the only python data
structure that makes sense: a list.

Note that this forces iteration/evaluation of all pages from the API. It therefore may cause singificant
IO spikes when used. You should avoid using the PaginatedResource.data property whenever
possible.

1.3. Service Clients 55

globus-sdk-python, Release 3.0.0a2

1.4 Local Endpoints

Unlike SDK functionality for accessing Globus APIs, the locally available Globus Endpoints require special treatment.
These accesses are not authenticated via Globus Auth, and may rely upon the state of the local filesystem, running
processes, and the permissions of local users.

1.4.1 Globus Connect Server

There are no SDK methods for accessing an installation of Globus Connect Server.

1.4.2 Globus Connect Personal

Globus Connect Personal endpoints belonging to the current user may be accessed via instances of the following class:

class globus_sdk.LocalGlobusConnectPersonal
A LocalGlobusConnectPersonal object represents the available SDK methods for inspecting and controlling a
running Globus Connect Personal installation.

These objects do not inherit from BaseClient and do not provide methods for interacting with any Globus Service
APIs.

property endpoint_id

Type string

The endpoint ID of the local Globus Connect Personal endpoint installation.

This value is loaded whenever it is first accessed, but saved after that.

Usage:

>>> from globus_sdk import TransferClient, LocalGlobusConnectPersonal
>>> local_ep = LocalGlobusConnectPersonal()
>>> ep_id = local_ep.endpoint_id
>>> tc = TransferClient(...) # needs auth details
>>> for f in tc.operation_ls(ep_id):
>>> print("Local file: ", f["name"])

You can also reset the value, causing it to load again on next access, with del local_ep.
endpoint_id

1.5 API Authorization

Authorizing calls against Globus can be a complex process. In particular, if you are using Refresh Tokens and short-
lived Access Tokens, you may need to take particular care managing your Authorization state.

Within the SDK, we solve this problem by using GlobusAuthorizers, which are attached to clients. These are a
very simple class of generic objects which define a way of getting an up-to-date Authorization header, and trying
to handle a 401 (if that header is expired).

Whenever using the Service Clients, you should be passing in an authorizer when you create a new client unless
otherwise specified.

The type of authorizer you will use depends very much on your application, but if you want examples you should look
at the examples section. It may help to start with the examples and come back to the full documentation afterwards.

56 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

1.5.1 The Authorizer Interface

We define the interface for GlobusAuthorizer objects in terms of an Abstract Base Class:

class globus_sdk.authorizers.base.GlobusAuthorizer
A GlobusAuthorizer is a very simple object which generates valid Authorization headers. It may also have
handling for responses that indicate that it has provided an invalid Authorization header.

abstract get_authorization_header()→ Optional[str]
Get the value for the Authorization header from this authorizer. If this method returns None, then
no Authorization header should be used.

handle_missing_authorization()
This operation should be called if a request is made with an Authorization header generated by this object
which returns a 401 (HTTP Unauthorized). If the GlobusAuthorizer thinks that it can take some
action to remedy this, it should update its state and return True. If the Authorizer cannot do anything in
the event of a 401, this may update state, but importantly returns False.

By default, this always returns False and takes no other action.

GlobusAuthorizer objects that fetch new access tokens when their existing ones expire or a 401 is received
implement the RenewingAuthorizer class

class globus_sdk.authorizers.renewing.RenewingAuthorizer(access_token=None,
expires_at=None,
on_refresh: Op-
tional[Callable] =
None)

Bases: globus_sdk.authorizers.base.GlobusAuthorizer

A RenewingAuthorizer is an abstract superclass to any authorizer that needs to get new Access Tokens in
order to form Authorization headers.

It may be passed an initial Access Token, but if so must also be passed an expires_at value for that token.

It provides methods that handle the logic for checking and adjusting expiration time, callbacks on renewal, and
401 handling.

To make an authorizer that implements this class implement the _get_token_response and _extract_token_data
methods for that authorization type,

Parameters

• access_token (str, optional) – Initial Access Token to use, only used if
expires_at is also set

• expires_at (int, optional) – Expiration time for the starting access_token
expressed as a POSIX timestamp (i.e. seconds since the epoch)

• on_refresh (callable, optiona) – A callback which is triggered any time this
authorizer fetches a new access_token. The on_refresh callable is invoked on the
OAuthTokenResponse object resulting from the token being refreshed. It should take
only one argument, the token response object. This is useful for implementing storage for
Access Tokens, as the on_refresh callback can be used to update the Access Tokens and
their expiration times.

get_authorization_header()
Check to see if a new token is needed and return “Bearer <access_token>”

handle_missing_authorization()
The renewing authorizer can respond to a service 401 by immediately invalidating its current Access

1.5. API Authorization 57

globus-sdk-python, Release 3.0.0a2

Token. When this happens, the next call to set_authorization_header() will result in a new
Access Token being fetched.

1.5.2 Authorizer Types

All of these types of authorizers can be imported from globus_sdk.authorizers.

class globus_sdk.NullAuthorizer
Bases: globus_sdk.authorizers.base.GlobusAuthorizer

This Authorizer implements No Authentication – as in, it ensures that there is no Authorization header.

get_authorization_header()
Get the value for the Authorization header from this authorizer. If this method returns None, then
no Authorization header should be used.

class globus_sdk.BasicAuthorizer(username: str, password: str)
Bases: globus_sdk.authorizers.base.StaticGlobusAuthorizer

This Authorizer implements Basic Authentication. Given a “username” and “password”, they are sent base64
encoded in the header.

Parameters

• username (str) – Username component for Basic Auth

• password (str) – Password component for Basic Auth

class globus_sdk.AccessTokenAuthorizer(access_token: str)
Bases: globus_sdk.authorizers.base.StaticGlobusAuthorizer

Implements Authorization using a single Access Token with no Refresh Tokens. This is sent as a Bearer token
in the header – basically unadorned.

Parameters access_token (str) – An access token for Globus Auth

class globus_sdk.RefreshTokenAuthorizer(refresh_token, auth_client, access_token=None,
expires_at=None, on_refresh=None)

Bases: globus_sdk.authorizers.renewing.RenewingAuthorizer

Implements Authorization using a Refresh Token to periodically fetch renewed Access Tokens. It may be
initialized with an Access Token, or it will fetch one the first time that get_authorization_header() is
called.

Example usage looks something like this:

>>> import globus_sdk
>>> auth_client = globus_sdk.AuthClient(client_id=..., client_secret=...)
>>> # do some flow to get a refresh token from auth_client
>>> rt_authorizer = globus_sdk.RefreshTokenAuthorizer(
>>> refresh_token, auth_client)
>>> # create a new client
>>> transfer_client = globus_sdk.TransferClient(authorizer=rt_authorizer)

anything that inherits from BaseClient, so at least TransferClient and AuthClient will automati-
cally handle usage of the RefreshTokenAuthorizer.

Parameters

• refresh_token (str) – Refresh Token for Globus Auth

• auth_client (AuthClient) – AuthClient capable of using the refresh_token

58 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

• access_token (str, optional) – Initial Access Token to use, only used if
expires_at is also set

• expires_at (int, optional) – Expiration time for the starting access_token
expressed as a POSIX timestamp (i.e. seconds since the epoch)

• on_refresh (callable, optional) – A callback which is triggered any time this
authorizer fetches a new access_token. The on_refresh callable is invoked on the
OAuthTokenResponse object resulting from the token being refreshed. It should take
only one argument, the token response object. This is useful for implementing storage for
Access Tokens, as the on_refresh callback can be used to update the Access Tokens and
their expiration times.

class globus_sdk.ClientCredentialsAuthorizer(confidential_client, scopes, ac-
cess_token=None, expires_at=None,
on_refresh=None)

Bases: globus_sdk.authorizers.renewing.RenewingAuthorizer

Implementation of a RenewingAuthorizer that renews confidential app client Access Tokens using a Confiden-
tialAppAuthClient and a set of scopes to fetch a new Access Token when the old one expires.

Example usage looks something like this:

>>> import globus_sdk
>>> confidential_client = globus_sdk.ConfidentialAppAuthClient(

client_id=..., client_secret=...)
>>> scopes = "..."
>>> cc_authorizer = globus_sdk.ClientCredentialsAuthorizer(
>>> confidential_client, scopes)
>>> # create a new client
>>> transfer_client = globus_sdk.TransferClient(authorizer=cc_authorizer)

any client that inherits from BaseClient should be able to use a ClientCredentialsAuthorizer to act as the
client itself.

Parameters

• confidential_client (ConfidentialAppAuthClient) – client object with a
valid id and client secret

• scopes (str) – A string of space-separated scope names being requested for the access
tokens that will be used for the Authorization header. These scopes must all be for the same
resource server, or else the token response will have multiple access tokens.

• access_token (str) – Initial Access Token to use, only used if expires_at is also
set. Must be requested with the same set of scopes passed to this authorizer.

• expires_at (int, optional) – Expiration time for the starting access_token
expressed as a POSIX timestamp (i.e. seconds since the epoch)

• on_refresh (callable, optiona) – A callback which is triggered any time this
authorizer fetches a new access_token. The on_refresh callable is invoked on the
OAuthTokenResponse object resulting from the token being refreshed. It should take
only one argument, the token response object. This is useful for implementing storage for
Access Tokens, as the on_refresh callback can be used to update the Access Tokens and
their expiration times.

1.5. API Authorization 59

globus-sdk-python, Release 3.0.0a2

1.6 TokenStorage

The TokenStorage component provides a way of storing and loading the tokens received from authentication and token
refreshes.

1.6.1 Usage

TokenStorage is available under the name globus_sdk.tokenstorage.

Storage adapters are the main objects of this subpackage. Primarily, usage should revolve around creating a storage
adapter, potentially loading data from it, and using it as the on_refresh handler for an authorizer.

For example:

import os
import globus_sdk
from globus_sdk.tokenstorage import SimpleJSONFileAdapter

my_file_adapter = SimpleJSONFileAdapter(os.path.expanduser("~/mytokens.json"))

if not my_file_adapter.file_exists():
... do a login low, getting back initial tokens
elided for simplicity here
token_response = ...
now store the tokens, and pull out the tokens for the
resource server we want
my_file_adapter.store(token_response)
by_rs = token_response.by_resource_server
tokens = by_rs["transfer.api.globus.org"]

else:
otherwise, we already did this whole song-and-dance, so just
load the tokens from that file
tokens = my_file_adapter.get_token_data("transfer.api.globus.org")

RereshTokenAuthorizer and ClientCredentialsAuthorizer both use
`on_refresh` callbacks
this feature is therefore only relevant for those auth types
#
auth_client is the internal auth client used for refreshes,
and which was used in the login flow
note that this is all normal authorizer usage wherein
my_file_adapter is providing the on_refresh callback
auth_client = ...
authorizer = globus_sdk.RefreshTokenAuthorizer(

tokens["refresh_token"],
auth_client,
access_token=tokens["access_token"],
expires_at=tokens["access_token_expires"],
on_refresh=my_file_adapter.on_refresh,

)

or, for client credentials
authorizer = globus_sdk.ClientCredentialsAuthorizer(

auth_client,
["urn:globus:auth:transfer.api.globus.org:all"],

(continues on next page)

60 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

access_token=tokens["access_token"],
expires_at=tokens["access_token_expires"],
on_refresh=my_file_adapter.on_refresh,

)

and then use the authorizer on a client!
tc = globus_sdk.TransferClient(authorizer=authorizer)

1.6.2 Adapter Types

globus_sdk.tokenstorage provides base clases for building your own storage adapters, and two complete
adapters.

The SimpleJSONFileAdapter is good for the “simplest possible” storage, using a JSON file to store token data.

The SQLiteAdapter is the next step up in complexity, for applications like the globus-cli which need to store
various tokens and additional configuration. In addition to basic token storage, the SQLiteAdapter provides for
namespacing of the token data, and for additional configuration storage.

1.6.3 Reference

class globus_sdk.tokenstorage.StorageAdapter
Bases: object

abstract get_token_data(resource_server: str)→ Optional[Dict]
Lookup token data for a resource server

Either returns a dict with the access token, refresh token (optional), and expiration time, or returns None,
indicating that there was no data for that resource server.

on_refresh(token_response: globus_sdk.services.auth.token_response.OAuthTokenResponse) →
None

By default, the on_refresh handler for a token storage adapter simply stores the token response.

class globus_sdk.tokenstorage.FileAdapter
Bases: globus_sdk.tokenstorage.base.StorageAdapter

File adapters are for single-user cases, where we can assume that there’s a simple file-per-user and users are
only ever attempting to read their own files.

file_exists()→ bool
Check if the file used by this file storage adapter exists.

user_only_umask()
a context manager to deny rwx to Group and World, x to User

this does not create a file, but ensures that if a file is created while in the context manager, its permissions
will be correct on unix systems

class globus_sdk.tokenstorage.SimpleJSONFileAdapter(filename: str)
Bases: globus_sdk.tokenstorage.base.FileAdapter

Parameters filename – the name of the file to write to and read from

A storage adapter for storing tokens in JSON files.

store(token_response: globus_sdk.services.auth.token_response.OAuthTokenResponse)
By default, self.on_refresh is just an alias for this function.

1.6. TokenStorage 61

globus-sdk-python, Release 3.0.0a2

Given a token response, extract all the token data and write it to self.filename as JSON data. Addi-
tionally will write the version of globus_sdk.tokenstorage which was in use.

Under the assumption that this may be running on a system with multiple local users, this sets the umask
such that only the owner of the resulting file can read or write it.

get_by_resource_server()→ Dict
Read only the by_resource_server formatted data from the file, discarding any other keys.

This returns a dict in the same format as OAuthTokenResponse.by_resource_server

get_token_data(resource_server: str)→ Optional[Dict]
Lookup token data for a resource server

Either returns a dict with the access token, refresh token (optional), and expiration time, or returns None,
indicating that there was no data for that resource server.

class globus_sdk.tokenstorage.SQLiteAdapter(dbname: str, namespace: str = 'DEFAULT')
Bases: globus_sdk.tokenstorage.base.FileAdapter

Parameters

• dbname – The name of the DB file to write to and read from. If the string “:memory:” is
used, an in-memory database will be used instead.

• namespace – A “namespace” to use within the database. All operations will be per-
formed indexed under this string, so that multiple distinct sets of tokens may be stored in
the database. You might use usernames as the namespace to implement a multi-user system,
or profile names to allow multiple Globus accounts to be used by a single user.

A storage adapter for storing tokens in sqlite databases.

SQLite adapters are for more complex cases, where there may be multiple users or “profiles” in play, and
additionally a dynamic set of resource servers which need to be stored in an extensible way.

The namespace is a user-supplied way of partitioning data, and any token responses passed to the storage
adapter are broken apart and stored indexed by resource_server. If you have a more complex use-case in which
this scheme will be insufficient, you should encode that in your choice of namespace values.

store_config(config_name: str, config_dict: Mapping)→ None

Parameters

• config_name – A string name for the configuration value

• config_dict – A dict of config which will be stored serialized as JSON

Store a config dict under the current namespace in the config table. Allows arbitrary configuration data to
be namespaced under the namespace, so that application config may be associated with the stored tokens.

Uses sqlite “REPLACE” to perform the operation.

read_config(config_name: str)→ Optional[Dict]

Parameters config_name – A string name for the configuration value

Load a config dict under the current namespace in the config table. If no value is found, returns None

remove_config(config_name: str)→ bool

Parameters config_name – A string name for the configuration value

Delete a previously stored configuration value.

Returns True if data was deleted, False if none was found to delete.

store(token_response: globus_sdk.services.auth.token_response.OAuthTokenResponse)→ None

62 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

Parameters token_response – a globus_sdk.OAuthTokenResponse object containing to-
ken data to store

By default, self.on_refresh is just an alias for this function.

Given a token response, extract the token data for the resource servers and write it to self.dbname,
stored under the adapter’s namespace

get_token_data(resource_server: str)→ Optional[Dict[str, Any]]
Load the token data JSON for a specific resource server.

In the event that the server cannot be found in the DB, return None.

Parameters resource_server – The name of a resource server to lookup in the DB, as one
would use as a key in OAuthTokenResponse.by_resource_server

get_by_resource_server()→ Dict[str, Any]
Load the token data JSON and return the resulting dict objects, indexed by resource server.

This should look identical to an OAuthTokenResponse.by_resource_server in format and content. (But it
is not attached to a token response object.)

remove_tokens_for_resource_server(resource_server: str)→ bool
Given a resource server to target, delete tokens for that resource server from the database (limited to the
current namespace). You can use this as part of a logout command implementation, loading token data as
a dict, and then deleting the data for each resource server.

Returns True if token data was deleted, False if none was found to delete.

Parameters resource_server – The name of the resource server to remove from the DB,
as one would use as a key in OAuthTokenResponse.by_resource_server

1.7 Globus SDK Configuration

The behaviors of the SDK can be controlled either through environment variables, or by passing parameters to clients
and other objects.

Note: SDK v1.x and v2.x supported the use of /etc/globus.cfg and ~/.globus.cfg to set certain values. This feature
was removed in v3.0 in favor of new environment variables for setting these values.

1.7.1 Environment Variables

Each of these environment variables will be read automatically by the SDK.

Environment variables have lower precedence than explicit values set in the interpreter. If
GLOBUS_SDK_VERIFY_SSL="false" is set and a client is created with verify_ssl=True, the result-
ing client will have SSL verification turned on.

GLOBUS_SDK_VERIFY_SSL Used to disable SSL verification, typically to handle SSL-intercepting firewalls. By
default, all connections to servers are verified. Set GLOBUS_SDK_VERIFY_SSL="false" to disable verifi-
cation.

GLOBUS_SDK_HTTP_TIMEOUT Adjust the timeout when HTTP requests are made. By default, requests have a 60
second read timeout – for slower responses, try setting GLOBUS_SDK_HTTP_TIMEOUT=120

GLOBUS_SDK_ENVIRONMENT The name of the environment to use. Set
GLOBUS_SDK_ENVIRONMENT="preview" to use the Globus Preview environment.

1.7. Globus SDK Configuration 63

globus-sdk-python, Release 3.0.0a2

GLOBUS_SDK_SERVICE_URL_* Override the URL used for a given service. The suffix of this environment vari-
able must match the service name string used by the SDK in all caps (SEARCH, TRANSFER, etc). For exam-
ple, set GLOBUS_SDK_SERVICE_URL_TRANSFER="https://proxy-device.example.org/" to
direct the SDK to use a custom URL when contacting the Globus Transfer service.

1.8 Globus SDK Core

Underlying components of the Globus SDK.

1.8.1 BaseClient

All service clients support the low level interface, provided by the BaseClient, from which all client types inherit.

A client object contains a transport, an object responsible for sending requests, encoding data, and handling po-
tential retries. It also may include an optional authorizer, an object responsible for handling token authentication
for requests.

BaseClient

class globus_sdk.client.BaseClient(*, environment: Optional[str] = None, base_url:
Optional[str] = None, authorizer: Op-
tional[globus_sdk.authorizers.base.GlobusAuthorizer]
= None, app_name: Optional[str] = None, trans-
port_params: Optional[Dict] = None)

Abstract base class for clients with error handling for Globus APIs.

Parameters

• authorizer (GlobusAuthorizer) – A GlobusAuthorizer which will generate
Authorization headers

• app_name (str) – Optional “nice name” for the application. Has no bearing on the se-
mantics of client actions. It is just passed as part of the User-Agent string, and may be useful
when debugging issues with the Globus Team

• transport_params (dict) – Options to pass to the transport for this client

All other parameters are for internal use and should be ignored.

retry_policy: Optional[globus_sdk.transport.retry.RetryPolicy] = None
retry policy for the client (None means the default policy will be used)

get(path: str, *, params: Optional[Dict] = None, headers: Optional[Dict] = None) →
globus_sdk.response.GlobusHTTPResponse
Make a GET request to the specified path.

See request() for details on the various parameters.

Returns GlobusHTTPResponse object

post(path: str, *, params: Optional[Dict] = None, data: Optional[Dict] =
None, headers: Optional[Dict] = None, encoding: Optional[str] = None) →
globus_sdk.response.GlobusHTTPResponse

Make a POST request to the specified path.

See request() for details on the various parameters.

Returns GlobusHTTPResponse object

64 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

delete(path: str, *, params: Optional[Dict] = None, headers: Optional[Dict] = None) →
globus_sdk.response.GlobusHTTPResponse

Make a DELETE request to the specified path.

See request() for details on the various parameters.

Returns GlobusHTTPResponse object

put(path: str, *, params: Optional[Dict] = None, data: Optional[Dict] =
None, headers: Optional[Dict] = None, encoding: Optional[str] = None) →
globus_sdk.response.GlobusHTTPResponse
Make a PUT request to the specified path.

See request() for details on the various parameters.

Returns GlobusHTTPResponse object

patch(path: str, *, params: Optional[Dict] = None, data: Optional[Dict] =
None, headers: Optional[Dict] = None, encoding: Optional[str] = None) →
globus_sdk.response.GlobusHTTPResponse

Make a PATCH request to the specified path.

See request() for details on the various parameters.

Returns GlobusHTTPResponse object

request(method: str, path: str, *, params: Optional[Dict] = None, data: Optional[Dict]
= None, headers: Optional[Dict] = None, encoding: Optional[str] = None) →
globus_sdk.response.GlobusHTTPResponse

Send an HTTP request

Parameters

• method (str) – HTTP request method, as an all caps string

• path (str) – Path for the request, with or without leading slash

• params (dict) – Parameters to be encoded as a query string

• headers (dict) – HTTP headers to add to the request

• data (dict or string) – Data to send as the request body. May pass through en-
coding.

• encoding (string) – A way to encode request data. “json”, “form”, and “text” are all
valid values. Custom encodings can be used only if they are registered with the transport.
By default, strings get “text” behavior and all other objects get “json”.

Returns GlobusHTTPResponse object

1.8.2 Transport Layer

The transport consists of a transport object (RequestsTransport), but also tooling for handling retries. It is
possible to either register custom retry check methods, or to override the RetryPolicy used by the transport in
order to customize this behavior.

1.8. Globus SDK Core 65

globus-sdk-python, Release 3.0.0a2

Transport

class globus_sdk.transport.RequestsTransport(verify_ssl: Optional[bool] = None,
http_timeout: Optional[float]
= None, retry_policy: Op-
tional[globus_sdk.transport.retry.RetryPolicy]
= None)

The RequestsTransport handles HTTP request sending and retries.

It receives raw request information from a client class, and then performs the following steps - encode the data
in a prepared request - repeatedly send the request until no retry is requested by the retry policy - return the last
response or reraise the last exception

Parameters

• verify_ssl (bool) – Explicitly enable or disable SSL verification. This parameter de-
faults to True, but can be set via the GLOBUS_SDK_VERIFY_SSL environment variable.
Any non-None setting via this parameter takes precedence over the environment variable.

• http_timeout (int) – Explicitly set an HTTP timeout value in seconds. This param-
eter defaults to 60s but can be set via the GLOBUS_SDK_HTTP_TIMEOUT environment
variable. Any value set via this parameter takes precedence over the environment variable.

request(method, url, params=None, data=None, headers=None, encoding: Optional[str] =
None, authorizer: Optional[globus_sdk.authorizers.base.GlobusAuthorizer] = None) → re-
quests.models.Response

Send an HTTP request

Parameters

• url – URL for the request

• method (str) – HTTP request method, as an all caps string

• params (dict) – Parameters to be encoded as a query string

• headers (dict) – HTTP headers to add to the request

• data (dict or string) – Data to send as the request body. May pass through en-
coding.

• encoding (string) – A way to encode request data. “json”, “form”, and “text” are all
valid values. Custom encodings can be used only if they are registered with the transport.
By default, strings get “text” behavior and all other objects get “json”.

Returns requests.Response object

Retries

class globus_sdk.transport.RetryPolicy(*, backoff: Callable[[globus_sdk.transport.retry.RetryContext],
float] = <function _exponen-
tial_backoff>, checks: Op-
tional[List[Callable[[globus_sdk.transport.retry.RetryContext],
globus_sdk.transport.retry.RetryCheckResult]]] =
None, max_sleep: int = 10, max_retries: int = 5)

The RetryPolicy object defines how retries are evaluated after a request. It defines several default hooks which
are executed after every request, and additional hooks can be registered. The job of the RetryPolicy is to pass
hooks a RetryContext to evaluate. Once a hook has determined that the request should or should not be retried,
or all hooks have been consulted, the policy returns a result.

66 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

The RetryPolicy is also responsible for determining the amount of backoff between retries, and executing the
sleeps between retries itself.

Parameters

• backoff (callable) – A function which determines how long to sleep between calls
based on the RetryContext. Defaults to expontential backoff with jitter based on the context
attempt number.

• checks (list of callables) – A list of initial checks for the policy. Any hooks
registered, including the default hooks, will run after these checks.

• max_sleep (int) – The maximum sleep time between retries (in seconds). If the com-
puted sleep time or the backoff requested by a retry check exceeds this value, this amount
of time will be used instead

• max_retries (int) – The maximum number of retries allowed by this policy. This
is checked by default_check_max_retries_exceeded to see if a request should
stop retrying.

RETRY_AFTER_STATUS_CODES = (429, 503)
status codes for responses which may have a Retry-After header

TRANSIENT_ERROR_STATUS_CODES = (429, 500, 502, 503, 504)
status codes for error responses which should generally be retried

EXPIRED_AUTHORIZATION_STATUS_CODES = (401,)
status codes indicating that authorization info was missing or expired

compute_delay(ctx: globus_sdk.transport.retry.RetryContext)→ float
Given a retry context, compute the amount of time to sleep. This is always the minimum of the backoff
(run on the context) and the max_sleep.

should_retry(context: globus_sdk.transport.retry.RetryContext)→ bool
Determine whether or not a request should retry by consulting all registered checks.

register_check(func: Callable[[globus_sdk.transport.retry.RetryContext],
globus_sdk.transport.retry.RetryCheckResult]) →
Callable[[globus_sdk.transport.retry.RetryContext],
globus_sdk.transport.retry.RetryCheckResult]

A retry checker is a callable responsible for implementing check(RetryContext) -> RetryCheckResult

check should not perform any sleeps or delays. Multiple checks should be chainable, as part of a Retry-
Policy.

register_default_checks()
This hook is called during RetryPolicy initialization. By default, it registers the following hooks:

• default_check_max_retries_exceeded

• default_check_request_exception

• default_check_retry_after_header

• default_check_tranisent_error

• default_check_expired_authorization

It can be overridden to register additional hooks or to remove the default hooks.

default_check_max_retries_exceeded(ctx: globus_sdk.transport.retry.RetryContext) →
globus_sdk.transport.retry.RetryCheckResult

check if the max retries for this policy have been exceeded

1.8. Globus SDK Core 67

globus-sdk-python, Release 3.0.0a2

default_check_request_exception(ctx: globus_sdk.transport.retry.RetryContext) →
globus_sdk.transport.retry.RetryCheckResult

check if a network error was encountered

default_check_retry_after_header(ctx: globus_sdk.transport.retry.RetryContext) →
globus_sdk.transport.retry.RetryCheckResult

check for a retry-after header if the response had a matching status

default_check_transient_error(ctx: globus_sdk.transport.retry.RetryContext) →
globus_sdk.transport.retry.RetryCheckResult

check for transient error status codes which could be resolved by retrying the request

default_check_expired_authorization(ctx: globus_sdk.transport.retry.RetryContext) →
globus_sdk.transport.retry.RetryCheckResult

check for expired authorization, as represented by a 401 error when the authorizer supports handling for
missing/invalid authorization

class globus_sdk.transport.RetryContext(attempt: int, *, retry_state: Dict, response: Op-
tional[requests.models.Response] = None, excep-
tion: Optional[Exception] = None, authorizer: Op-
tional[globus_sdk.authorizers.base.GlobusAuthorizer]
= None)

The RetryContext is an object passed to retry checks in order to determine whether or not a request should be
retried. The context is constructed after each request, regardless of success or failure.

If an exception was raised, the context will contain that exception object. Otherwise, the context will contain a
response object. Exactly one of response or exception will be present.

Parameters

• attempt (int) – The request attempt number, starting at 0.

• response (requests.Response) – The response on a successful request

• exception (Exception) – The error raised when trying to send the request

• authorizer (GlobusAuthorizer) – The authorizer object from the client making the
request

Data Encoders

class globus_sdk.transport.RequestEncoder
A RequestEncoder takes input parameters and outputs a requests.Requests object.

The default encoder requires that the data is text and is a no-op. It can also be referred to as the "text"
encoder.

class globus_sdk.transport.JSONRequestEncoder
This encoder prepares the data as JSON. It also ensures that content-type is set, so that APIs requiring a content-
type of “application/json” are able to read the data.

class globus_sdk.transport.FormRequestEncoder
This encoder formats data as a form-encoded body. It requires that the input data is a dict – any other datatype
will result in errors.

68 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

1.8.3 Responses

Unless noted otherwise, all method return values for Globus SDK Clients are GlobusHTTPResponse objects.

To customize client methods with additional detail, the SDK uses subclasses of GlobusHTTPResponse.

class globus_sdk.response.GlobusHTTPResponse(response: Union[requests.models.Response,
GlobusHTTPResponse], client: Op-
tional[BaseClient] = None)

Bases: object

Response object that wraps an HTTP response from the underlying HTTP library. If the response is JSON, the
parsed data will be available in data, otherwise data will be None and text should be used instead.

The most common response data is a JSON dictionary. To make handling this type of response as seemless
as possible, the GlobusHTTPResponse object implements the immutable mapping protocol for dict-style
access. This is just an alias for access to the underlying data.

If data is not a dictionary, item access will raise TypeError.

>>> print("Response ID": r["id"]) # alias for r.data["id"]

Variables

• http_status – HTTP status code returned by the server (int)

• content_type – Content-Type header returned by the server (str)

• client – The client instance which made the request

get(key, default=None)
get is just an alias for data.get(key, default), but with the added check that if data is None,
it returns the default.

property text
The raw response data as a string.

1.8.4 Exceptions

All Globus SDK errors inherit from GlobusError, and all SDK error classes are importable from globus_sdk.

You can therefore capture all errors thrown by the SDK by looking for GlobusError, as in

import logging
from globus_sdk import TransferClient, GlobusError

try:
tc = TransferClient(...)
search with no parameters will throw an exception
eps = tc.endpoint_search()

except GlobusError:
logging.exception("Globus Error!")
raise

In most cases, it’s best to look for specific subclasses of GlobusError. For example, to write code which is
distinguishes between network failures and unexpected API conditions, you’ll want to look for NetworkError and
GlobusAPIError

1.8. Globus SDK Core 69

globus-sdk-python, Release 3.0.0a2

import logging
from globus_sdk import TransferClient, GlobusError, GlobusAPIError, NetworkError

try:
tc = TransferClient(...)

eps = tc.endpoint_search(filter_fulltext="myendpointsearch")

for ep in eps:
print(ep["display_name"])

...
except GlobusAPIError as e:

Error response from the REST service, check the code and message for
details.
logging.error(

"Got a Globus API Error\n"
f"Error Code: {e.code}\n"
f"Error Message: {e.message}"

)
raise e

except NetworkError:
logging.error("Network Failure. Possibly a firewall or connectivity issue")
raise

except GlobusError:
logging.exception("Totally unexpected GlobusError!")
raise

else:
...

Of course, if you want to learn more information about the response, you should inspect it more than this.

All errors raised by the SDK should be instances of GlobusError. Malformed calls to Globus SDK methods
typically raise GlobusSDKUsageError, but, in rare cases, may raise standard python exceptions (ValueError,
OSError, etc.)

Error Classes

class globus_sdk.GlobusError
Bases: Exception

Root of the Globus Exception hierarchy. Stub class.

class globus_sdk.GlobusSDKUsageError
Bases: globus_sdk.exc.GlobusError, ValueError

A GlobusSDKUsageErrormay be thrown in cases in which the SDK detects that it is being used improperly.

These errors typically indicate that some contract regarding SDK usage (e.g. required order of operations) has
been violated.

class globus_sdk.GlobusAPIError(r, *args, **kw)
Bases: globus_sdk.exc.GlobusError

Wraps errors returned by a REST API.

Variables

• http_status – HTTP status code (int)

70 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

• code – Error code from the API (str), or “Error” for unclassified errors

• message – Error message from the API. In general, this will be more useful to developers,
but there may be cases where it’s suitable for display to end users.

property raw_json
Get the verbatim error message received from a Globus API, interpreted as a JSON string and evaluated as
a dict

If the body cannot be loaded as JSON, this is None

property raw_text
Get the verbatim error message receved from a Globus API as a string

class globus_sdk.NetworkError(msg, exc, *args, **kw)
Bases: globus_sdk.exc.GlobusError

Error communicating with the REST API server.

Holds onto original exception data, but also takes a message to explain potentially confusing or inconsistent
exceptions passed to us

class globus_sdk.GlobusConnectionError(msg, exc, *args, **kw)
Bases: globus_sdk.exc.NetworkError

A connection error occured while making a REST request.

class globus_sdk.GlobusTimeoutError(msg, exc, *args, **kw)
Bases: globus_sdk.exc.NetworkError

The REST request timed out.

class globus_sdk.GlobusConnectionTimeoutError(msg, exc, *args, **kw)
Bases: globus_sdk.exc.GlobusTimeoutError

The request timed out during connection establishment. These errors are safe to retry.

1.9 Versioning Policy

The Globus SDK follows Semantic Versioning.

That means that we use version numbers of the form MAJOR.MINOR.PATCH.

When the SDK needs to make incompatible API changes, the MAJOR version number will be incremented. MINOR
and PATCH version increments indicate new features or bugfixes.

1.9.1 Public Interfaces

Features documented here are public and all other components of the SDK should be considered private. Undocu-
mented components may be subject to backwards incompatible changes without increments to the MAJOR version.

1.9. Versioning Policy 71

https://semver.org/

globus-sdk-python, Release 3.0.0a2

1.9.2 Recommended Pinning

We recommend that users of the SDK pin only to the major version which they require. e.g. specify
globus-sdk>=1.7,<2.0 in your package requirements.

1.9.3 Upgrade Caveat

It is always possible for new features or bugfixes to cause issues.

If you are installing the SDK into mission-critical production systems, we strongly encourage you to establish a method
of pinning the exact version used and testing upgrades.

1.10 License

Copyright 2016 University of Chicago

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.11 Globus SDK Examples

Each of these pages contains an example of a piece of SDK functionality.

1.11.1 API Authorization

Using a GlobusAuthorizer is hard to grasp without a few examples to reference. The basic usage should be to
create these at client instantiation time.

Access Token Authorization on AuthClient and TransferClient

Perhaps you’re in a part of your application that only sees Access Tokens. Access Tokens are used to directly authenti-
cate calls against Globus APIs, and are limited-lifetime credentials. You have distinct Access Tokens for each Globus
service which you want to access.

With the tokens in hand, it’s just a simple matter of wrapping the tokens in AccessTokenAuthorizer objects.

from globus_sdk import AuthClient, TransferClient, AccessTokenAuthorizer

AUTH_ACCESS_TOKEN = "..."
TRANSFER_ACCESS_TOKEN = "..."

note that we don't provide the client ID in this case
if you're using an Access Token you can't do the OAuth2 flows
auth_client = AuthClient(authorizer=AccessTokenAuthorizer(AUTH_ACCESS_TOKEN))

(continues on next page)

72 Chapter 1. Table of Contents

http://www.apache.org/licenses/LICENSE-2.0

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

transfer_client = TransferClient(
authorizer=AccessTokenAuthorizer(TRANSFER_ACCESS_TOKEN)

)

Refresh Token Authorization on AuthClient and TransferClient

Refresh Tokens are long-lived credentials used to get new Access Tokens whenever they expire. However, it would be
very awkward to create a new client instance every time your credentials expire!

Instead, use a RefreshTokenAuthorizer to automatically re-up your credentials whenever they near expiration.

Re-upping credentials is an operation that requires having client credentials for Globus Auth, so creating the authorizer
is more complex this time.

from globus_sdk import (
AuthClient,
TransferClient,
ConfidentialAppAuthClient,
RefreshTokenAuthorizer,

)

for doing the refresh
CLIENT_ID = "..."
CLIENT_SECRET = "..."

the actual tokens
AUTH_REFRESH_TOKEN = "..."
TRANSFER_REFRESH_TOKEN = "..."

making the authorizer requires that we have an AuthClient which can talk
OAuth2 to Globus Auth
internal_auth_client = ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)

now let's bake a couple of authorizers
auth_authorizer = RefreshTokenAuthorizer(AUTH_REFRESH_TOKEN, internal_auth_client)
transfer_authorizer = RefreshTokenAuthorizer(

TRANSFER_REFRESH_TOKEN, internal_auth_client
)

auth_client here is totally different from "internal_auth_client" above
the former is being used to request new tokens periodically, while this
one represents a user authenticated with those tokens
auth_client = AuthClient(authorizer=auth_authorizer)
transfer_client doesn't have to contend with this duality -- it's always
representing a user
transfer_client = TransferClient(authorizer=transfer_authorizer)

1.11. Globus SDK Examples 73

globus-sdk-python, Release 3.0.0a2

Basic Auth on an AuthClient

If you’re using an AuthClient to do OAuth2 flows, you likely want to authenticate it using your client credentials
– the client ID and client secret.

The preferred method is to use the AuthClient subclass which automatically specifies its authorizer. Internally, this
will use a BasicAuthorizer to do Basic Authentication.

By way of example:

from globus_sdk import ConfidentialAppAuthClient

CLIENT_ID = "..."
CLIENT_SECRET = "..."

client = ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)

and you’re off to the races!

Under the hood, this is implicitly running

AuthClient(authorizer=BasicAuthorizer(CLIENT_ID, CLIENT_SECRET))

but don’t do this yourself – ConfidentialAppAuthClient has different methods from the base AuthClient.

1.11.2 Native App Login

This is an example of the use of the Globus SDK to carry out an OAuth2 Native App Authentication flow.

The goal here is to have a user authenticate in Globus Auth, and for the SDK to procure tokens which may be used to
authenticate SDK calls against various services for that user.

Get a Client

In order to complete an OAuth2 flow to get tokens, you must have a client definition registered with Globus Auth. To
do so, follow the relevant documentation for the Globus Auth Service or go directly to developers.globus.org to do the
registration.

Make sure, when registering your application, that you enter https://auth.globus.org/v2/web/
auth-code into the “Redirect URIs” field. This is necessary to leverage the default behavior of the SDK, and
is typically sufficient for this type of application.

Do the Flow

If you want to copy-paste an example, you’ll need at least a client_id for your AuthClient object. You should
also specifically use the NativeAppAuthClient type of AuthClient, as it has been customized to handle this
flow.

The shortest version of the flow looks like this:

import globus_sdk

you must have a client ID
CLIENT_ID = "..."

(continues on next page)

74 Chapter 1. Table of Contents

https://docs.globus.org/api/auth/
https://developers.globus.org/

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

client = globus_sdk.NativeAppAuthClient(CLIENT_ID)
client.oauth2_start_flow()

authorize_url = client.oauth2_get_authorize_url()
print("Please go to this URL and login: {0}".format(authorize_url))

auth_code = input("Please enter the code you get after login here: ").strip()
token_response = client.oauth2_exchange_code_for_tokens(auth_code)

the useful values that you want at the end of this
globus_auth_data = token_response.by_resource_server["auth.globus.org"]
globus_transfer_data = token_response.by_resource_server["transfer.api.globus.org"]
globus_auth_token = globus_auth_data["access_token"]
globus_transfer_token = globus_transfer_data["access_token"]

Do It With Refresh Tokens

The flow above will give you access tokens (short-lived credentials), good for one-off operations. However, if you
want a persistent credential to access the logged-in user’s Globus resources, you need to request a long-lived credential
called a Refresh Token.

refresh_tokens is a boolean option to the oauth2_start_flow method. When False, the flow will terminate
with a collection of Access Tokens, which are simple limited lifetime credentials for accessing services. When True,
the flow will terminate not only with the Access Tokens, but additionally with a set of Refresh Tokens which can be
used indefinitely to request new Access Tokens. The default is False.

Simply add this option to the example above:

client.oauth2_start_flow(refresh_tokens=True)

1.11.3 Client Credentials Authentication

This is an example of the use of the Globus SDK to carry out an OAuth2 Client Credentials Authentication flow.

The goal here is to have an application authenticate in Globus Auth directly, as itself. Unlike many other OAuth2
flows, the application does not act on behalf of a user, but on its own behalf.

This flow is suitable for automated cases in which an application, even one as simple as a cron job, makes use of
Globus outside of the context of a specific end-user interaction.

Get a Client

In order to complete an OAuth2 flow to get tokens, you must have a client definition registered with Globus Auth. To
do so, follow the relevant documentation for the Globus Auth Service or go directly to developers.globus.org to do the
registration.

During registration, make sure that the “Native App” checkbox is unchecked. You will typically want your scopes to
be openid, profile, email, and urn:globus:auth:scope:transfer.api.globus.org:all.

Once your client is created, expand it on the Projects page and click “Generate Secret”. Save the secret in a secure
location accessible from your code.

1.11. Globus SDK Examples 75

https://docs.globus.org/api/auth/
https://developers.globus.org/

globus-sdk-python, Release 3.0.0a2

Do the Flow

You should specifically use the ConfidentialAppAuthClient type of AuthClient, as it has been customized
to handle this flow.

The shortest version of the flow looks like this:

import globus_sdk

you must have a client ID
CLIENT_ID = "..."
the secret, loaded from wherever you store it
CLIENT_SECRET = "..."

client = globus_sdk.ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)
token_response = client.oauth2_client_credentials_tokens()

the useful values that you want at the end of this
globus_auth_data = token_response.by_resource_server["auth.globus.org"]
globus_transfer_data = token_response.by_resource_server["transfer.api.globus.org"]
globus_auth_token = globus_auth_data["access_token"]
globus_transfer_token = globus_transfer_data["access_token"]

Use the Resulting Tokens

The Client Credentials Grant will only produce Access Tokens, not Refresh Tokens, so you should pass its results
directly to the AccessTokenAuthorizer.

For example, after running the code above,

authorizer = globus_sdk.AccessTokenAuthorizer(globus_transfer_token)
tc = globus_sdk.TransferClient(authorizer=authorizer)
print("Endpoints Belonging to {}@clients.auth.globus.org:".format(CLIENT_ID))
for ep in tc.endpoint_search(filter_scope="my-endpoints"):

print("[{}] {}".format(ep["id"], ep["display_name"]))

Note that we’re doing a search for “my endpoints”, but we refer to the results as belonging to
<CLIENT_ID>@clients.auth.globus.org. The “current user” is not any human user, but the client itself.

Handling Token Expiration

When you get access tokens, you also get their expiration time in seconds. You can inspect the
globus_transfer_data and globus_auth_data structures in the example to see.

Tokens should have a long enough lifetime for any short-running operations (less than a day).

When your tokens are expired, you should just request new ones by making another Client Credentials request. De-
pending on your needs, you may need to track the expiration times along with your tokens.

76 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

1.11.4 Using ClientCredentialsAuthorizer

The SDK also provides a specialized Authorizer which can be used to automatically handle token expiration.

Use it like so:

import globus_sdk

you must have a client ID
CLIENT_ID = "..."
the secret, loaded from wherever you store it
CLIENT_SECRET = "..."

confidential_client = globus_sdk.ConfidentialAppAuthClient(
client_id=CLIENT_ID, client_secret=CLIENT_SECRET

)
scopes = "urn:globus:auth:scope:transfer.api.globus.org:all"
cc_authorizer = globus_sdk.ClientCredentialsAuthorizer(confidential_client, scopes)
create a new client
transfer_client = globus_sdk.TransferClient(authorizer=cc_authorizer)

usage is still the same
print("Endpoints Belonging to {}@clients.auth.globus.org:".format(CLIENT_ID))
for ep in tc.endpoint_search(filter_scope="my-endpoints"):

print("[{}] {}".format(ep["id"], ep["display_name"]))

1.11.5 Three Legged OAuth with Flask

This type of authorization is used for web login with a server-side application. For example, a Django app or other
application server handles requests.

This example uses Flask, but should be easily portable to other application frameworks.

Components

There are two components to this application: login and logout.

Login sends a user to Globus Auth to get credentials, and then may act on the user’s behalf. Logout invalidates server-
side credentials, so that the application may no longer take actions for the user, and the client-side session, allowing
for a fresh login if desired.

Register an App

In order to complete an OAuth2 flow to get tokens, you must have a client definition registered with Globus Auth. To
do so, follow the relevant documentation for the Globus Auth Service or go directly to developers.globus.org to do the
registration.

Make sure that the “Native App” checkbox is unchecked, and list http://localhost:5000/login in the
“Redirect URIs”.

Set the Scopes to openid, profile, email, urn:globus:auth:scope:transfer.api.globus.
org:all.

On the projects page, expand the client description and click “Generate Secret”. Save the resulting secret a file named
example_app.conf, along with the client ID:

1.11. Globus SDK Examples 77

https://docs.globus.org/api/auth/
https://developers.globus.org/

globus-sdk-python, Release 3.0.0a2

SERVER_NAME = "localhost:5000"
this is the session secret, used to protect the Flask session. You should
use a longer secret string known only to your application
details are beyond the scope of this example
SECRET_KEY = "abc123!"

APP_CLIENT_ID = "<CLIENT_ID>"
APP_CLIENT_SECRET = "<CLIENT_SECRET>"

Shared Utilities

Some pieces that are of use for both parts of this flow.

First, you’ll need to install Flask and the globus-sdk. Assuming you want to do so into a fresh virtualenv:

$ virtualenv example-venv
...
$ source example-venv/bin/activate
$ pip install Flask==0.11.1 globus-sdk
...

You’ll also want a shared function for loading the SDK AuthClient which represents your application, as you’ll
need it in a couple of places. Create it, along with the defintiion for your Flask app, in example_app.py:

from flask import Flask, url_for, session, redirect, request
import globus_sdk

app = Flask(__name__)
app.config.from_pyfile("example_app.conf")

actually run the app if this is called as a script
if __name__ == "__main__":

app.run()

def load_app_client():
return globus_sdk.ConfidentialAppAuthClient(

app.config["APP_CLIENT_ID"], app.config["APP_CLIENT_SECRET"]
)

Login

Let’s add login functionality to the end of example_app.py, along with a basic index page:

@app.route("/")
def index():

"""
This could be any page you like, rendered by Flask.
For this simple example, it will either redirect you to login, or print
a simple message.
"""
if not session.get("is_authenticated"):

return redirect(url_for("login"))

(continues on next page)

78 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

return "You are successfully logged in!"

@app.route("/login")
def login():

"""
Login via Globus Auth.
May be invoked in one of two scenarios:

1. Login is starting, no state in Globus Auth yet
2. Returning to application during login, already have short-lived

code from Globus Auth to exchange for tokens, encoded in a query
param

"""
the redirect URI, as a complete URI (not relative path)
redirect_uri = url_for("login", _external=True)

client = load_app_client()
client.oauth2_start_flow(redirect_uri)

If there's no "code" query string parameter, we're in this route
starting a Globus Auth login flow.
Redirect out to Globus Auth
if "code" not in request.args:

auth_uri = client.oauth2_get_authorize_url()
return redirect(auth_uri)

If we do have a "code" param, we're coming back from Globus Auth
and can start the process of exchanging an auth code for a token.
else:

code = request.args.get("code")
tokens = client.oauth2_exchange_code_for_tokens(code)

store the resulting tokens in the session
session.update(tokens=tokens.by_resource_server, is_authenticated=True)
return redirect(url_for("index"))

Logout

Logout is very simple – it’s just a matter of cleaning up the session. It does the added work of cleaning up any tokens
you fetched by invalidating them in Globus Auth beforehand:

@app.route("/logout")
def logout():

"""
- Revoke the tokens with Globus Auth.
- Destroy the session state.
- Redirect the user to the Globus Auth logout page.
"""
client = load_app_client()

Revoke the tokens with Globus Auth
for token in (

token_info["access_token"] for token_info in session["tokens"].values()
):

client.oauth2_revoke_token(token)

(continues on next page)

1.11. Globus SDK Examples 79

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

Destroy the session state
session.clear()

the return redirection location to give to Globus AUth
redirect_uri = url_for("index", _external=True)

build the logout URI with query params
there is no tool to help build this (yet!)
globus_logout_url = (

"https://auth.globus.org/v2/web/logout"
+ "?client={}".format(app.config["PORTAL_CLIENT_ID"])
+ "&redirect_uri={}".format(redirect_uri)
+ "&redirect_name=Globus Example App"

)

Redirect the user to the Globus Auth logout page
return redirect(globus_logout_url)

Using the Tokens

Using the tokens thus acquired is a simple matter of pulling them out of the session and putting one into an
AccessTokenAuthorizer. For example, one might do the following:

authorizer = globus_sdk.AccessTokenAuthorizer(
session["tokens"]["transfer.api.globus.org"]["access_token"]

)
transfer_client = globus_sdk.TransferClient(authorizer=authorizer)

print("Endpoints belonging to the current logged-in user:")
for ep in transfer_client.endpoint_search(filter_scope="my-endpoints"):

print("[{}] {}".format(ep["id"], ep["display_name"]))

1.11.6 Advanced Transfer Client Usage

This is a collection of examples of advanced usage patterns leveraging the TransferClient.

Relative Task Deadlines

One of the lesser-known features of the Globus Transfer service is the ability for users to set a deadline by which
a Transfer or Delete task must complete. If the task is still in progress when the deadline is reached, it is aborted.

You can use this, for example, to enforce that a Transfer Task which takes too long results in errors (even if it is making
slow progress).

Because the deadline is accepted as an ISO 8601 date, you can use python’s built-in datetime library to compute
a timestamp to pass to the service.

Start out by computing the current time as a datetime:

import datetime

now = datetime.datetime.utcnow()

80 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

Then, compute a relative timestamp using timedelta:

future_1minute = now + datetime.timedelta(minutes=1)

This value can be passed to a TransferData, as in

import globus_sdk

get various components needed for a Transfer Task
beyond the scope of this example
transfer_client = globus_sdk.TransferClient(...)
source_endpoint_uuid = ...
dest_endpoint_uuid = ...

note how `future_1minute` is used here
submission_data = globus_sdk.TransferData(

transfer_client,
source_endpoint_uuid,
dest_endpoint_uuid,
deadline=str(future_1minute),

)

Retrying Task Submission

Globus Transfer and Delete Tasks are often scheduled and submitted by automated systems and scripts. In these
scenarios, it’s often desirable to retry submission in the event of network or service errors to ensure that the job is
really submitted.

There are two key pieces to doing this correctly: Once and Only Once Submission, and logging captured errors.

For once-and-only-once task submission, you can explicitly invoke TransferClient.
get_submission_id(), which is a unique ID used to ensure exactly this. However, TransferData
and DeleteData both implicitly invoke this method if they are initialized without an explicit submission_id.

For proper logging, we’ll rely on the standard library logging package.

In this example, we’ll retry task submission 5 times, and we’ll want to separate retry logic from the core task submis-
sion logic.

import logging
from globus_sdk import GlobusAPIError, NetworkError

putting logger objects named by the module name into the module-level
scope is a common best practice -- for more details, you should look
into the python logging documentation
logger = logging.getLogger(__name__)

def retry_globus_function(func, retries=5, func_name="<func>"):
"""
Define what it means to retry a "Globus Function", some function or
method which produces Globus SDK errors on failure.
"""

def actually_retry():
"""
Helper: run the next retry

(continues on next page)

1.11. Globus SDK Examples 81

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

"""
return retry_globus_function(func, retries=(retries - 1), func_name=func_name)

def check_for_reraise():
"""
Helper: check if we should reraise an error

logs an error message on reraise
must be run inside an exception handler

"""
if retries < 1:

logger.error("Retried {} too many times.".format(func_name))
raise

try:
return func()

except NetworkError:
log with exc_info=True to capture a full stacktrace as a
debug-level log
logger.debug(

("Globus func {} experienced a network error".format(func_name)),
exc_info=True,

)
check_for_reraise()

except GlobusAPIError:
again, log with exc_info=True to capture a full stacktrace
logger.warn(

("Globus func {} experienced a network error".format(func_name)),
exc_info=True,

)
check_for_reraise()

if we reach this point without returning or erroring, retry
return actually_retry()

The above is a fairly generic tool for retrying any function which throws globus_sdk.NetworkError and
globus_sdk.GlobusAPIError errors. It is not even specific to task resubmission, so you could use it against
other retry-safe Globus APIs.

Now, moving on to creating a retry-safe function to put into it, things get a little bit tricky. The retry handler above
requires a function which takes no arguments, so we’ll have to define a function dynamically which fits that constraint:

def submit_transfer_with_retries(transfer_client, transfer_data):
create a function with no arguments, for our retry handler
def locally_bound_func():

return transfer_client.submit_transfer(transfer_data)

return retry_globus_function(locally_bound_func, func_name="submit_transfer")

Now we’re finally all-set to create a TransferData and submit it:

from globus_sdk import TransferClient, TransferData

get various components needed for a Transfer Task
beyond the scope of this example
transfer_client = TransferClient(...)
source_endpoint_uuid = ...
dest_endpoint_uuid = ...

(continues on next page)

82 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

submission_data = TransferData(
transfer_client, source_endpoint_uuid, dest_endpoint_uuid

)

add any number of items to the submission data
submission_data.add_item("/source/path", "dest/path")
...

do it!
submit_transfer_with_retries(transfer_client, submission_data)

The same exact approach can be applied to TransferClient.submit_delete, and a wide variety of other
SDK methods.

1.11.7 Recursive ls via TransferClient

The Globus Transfer API does not offer a recursive variant of the ls operation. There are several reasons for this, but
most obviously: ls is synchronous, and a recursive listing may be very slow.

This example demonstrates how to write a breadth-first traversal of a dir tree using a local deque to implement recursive
ls. You will need a properly authenticated TransferClient.

from collections import deque

def _recursive_ls_helper(tc, ep, queue, max_depth):
while queue:

abs_path, rel_path, depth = queue.pop()
path_prefix = rel_path + "/" if rel_path else ""

res = tc.operation_ls(ep, path=abs_path)

if depth < max_depth:
queue.extend(

(
res["path"] + item["name"],
path_prefix + item["name"],
depth + 1,

)
for item in res["DATA"]
if item["type"] == "dir"

)
for item in res["DATA"]:

item["name"] = path_prefix + item["name"]
yield item

tc: a TransferClient
ep: an endpoint ID
path: the path to list recursively
def recursive_ls(tc, ep, path, max_depth=3):

queue = deque()
queue.append((path, "", 0))
yield from _recursive_ls_helper(tc, ep, queue, max_depth)

1.11. Globus SDK Examples 83

globus-sdk-python, Release 3.0.0a2

This acts as a generator function, which you can then use for iteration, or evaluate with list() or other expressions
which will iterate over values from the generator.

adding sleep

One of the issues with the above recursive listing tooling is that it can easily run into rate limits on very large dir trees
with a fast filesystem.

To avoid issues, simply add a periodic sleep. For example, we could add a sleep_frequency and
sleep_duration, then count the number of ls calls that have been made. Every sleep_frequency calls,
sleep for sleep_duration.

The modifications in the helper would be something like so:

import time

def _recursive_ls_helper(tc, ep, queue, max_depth, sleep_frequency, sleep_duration):
call_count = 0
while queue:

abs_path, rel_path, depth = queue.pop()
path_prefix = rel_path + "/" if rel_path else ""

res = tc.operation_ls(ep, path=abs_path)

call_count += 1
if call_count % sleep_frequency == 0:

time.sleep(sleep_duration)

as above
...

parameter passthrough

What if you want to pass parameters to the ls calls? Accepting that some behaviors – like order-by – might not
behave as expected if passed to the recursive calls, you can still do-so. Add ls_params, a dictionary of additional
parameters to pass to the underlying operation_ls invocations.

The helper can assume that a dict is passed, and the wrapper would just initialize it as {} if nothing is passed.

Something like so:

def _recursive_ls_helper(tc, ep, queue, max_depth, ls_params):
call_count = 0
while queue:

abs_path, rel_path, depth = queue.pop()
path_prefix = rel_path + "/" if rel_path else ""

res = tc.operation_ls(ep, path=abs_path, **ls_params)

as above
...

importantly, the params should default to `None` and be rewritten to a
dict in the function body (parameter default bindings are modifiable)

(continues on next page)

84 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

def recursive_ls(tc, ep, path, max_depth=3, ls_params=None):
ls_params = ls_params or {}
queue = deque()
queue.append((path, "", 0))
yield from _recursive_ls_helper(

tc, ep, queue, max_depth, sleep_frequency, sleep_duration, ls_params
)

What if we want to have different parameters to the top-level ls call from any of the recursive calls? For example,
maybe we want to filter the items found in the initial directory, but not in subdirectories.

In that case, we just add on another layer: top_level_ls_params, and we only use those parameters on the initial
call.

def _recursive_ls_helper(
tc,
ep,
queue,
max_depth,
ls_params,
top_level_ls_params,

):
first_call = True
while queue:

abs_path, rel_path, depth = queue.pop()
path_prefix = rel_path + "/" if rel_path else ""

use_params = ls_params
if first_call:

on modern pythons, dict expansion can be used to easily
combine dicts
use_params = {**ls_params, **top_level_ls_params}
first_call = False

res = tc.operation_ls(ep, path=abs_path, **use_params)

again, the rest of the loop is the same
...

def recursive_ls(
tc,
ep,
path,
max_depth=3,
ls_params=None,
top_level_ls_params=None,

):
ls_params = ls_params or {}
top_level_ls_params = top_level_ls_params or {}
...

1.11. Globus SDK Examples 85

globus-sdk-python, Release 3.0.0a2

With Sleep and Parameter Passing

We can combine sleeps and parameter passing into one final, complete example:

import time
from collections import deque

def _recursive_ls_helper(
tc,
ep,
queue,
max_depth,
sleep_frequency,
sleep_duration,
ls_params,
top_level_ls_params,

):
call_count = 0
while queue:

abs_path, rel_path, depth = queue.pop()
path_prefix = rel_path + "/" if rel_path else ""

use_params = ls_params
if call_count == 0:

use_params = {**ls_params, **top_level_ls_params}

res = tc.operation_ls(ep, path=abs_path, **use_params)

call_count += 1
if call_count % sleep_frequency == 0:

time.sleep(sleep_duration)

if depth < max_depth:
queue.extend(

(
res["path"] + item["name"],
path_prefix + item["name"],
depth + 1,

)
for item in res["DATA"]
if item["type"] == "dir"

)
for item in res["DATA"]:

item["name"] = path_prefix + item["name"]
yield item

def recursive_ls(
tc,
ep,
path,
max_depth=3,
sleep_frequency=10,
sleep_duration=0.5,
ls_params=None,
top_level_ls_params=None,

):

(continues on next page)

86 Chapter 1. Table of Contents

globus-sdk-python, Release 3.0.0a2

(continued from previous page)

ls_params = ls_params or {}
top_level_ls_params = top_level_ls_params or {}
queue = deque()
queue.append((path, "", 0))
yield from _recursive_ls_helper(

tc,
ep,
queue,
max_depth,
sleep_frequency,
sleep_duration,
ls_params,
top_level_ls_params,

)

1.11. Globus SDK Examples 87

globus-sdk-python, Release 3.0.0a2

88 Chapter 1. Table of Contents

PYTHON MODULE INDEX

g
globus_sdk.groups, 22
globus_sdk.search, 22
globus_sdk.services.transfer.response,

53

89

globus-sdk-python, Release 3.0.0a2

90 Python Module Index

INDEX

Symbols
__delitem__() (globus_sdk.IdentityMap method), 17
__getitem__() (globus_sdk.IdentityMap method), 17
__init__() (globus_sdk.IdentityMap method), 17

A
AccessTokenAuthorizer (class in globus_sdk), 58
ActivationRequirementsResponse (class in

globus_sdk.services.transfer.response), 53
active_until() (globus_sdk.services.transfer.response.ActivationRequirementsResponse

method), 53
add() (globus_sdk.IdentityMap method), 17
add_endpoint_acl_rule()

(globus_sdk.TransferClient method), 36
add_endpoint_role() (globus_sdk.TransferClient

method), 35
add_endpoint_server()

(globus_sdk.TransferClient method), 35
add_item() (globus_sdk.DeleteData method), 52
add_item() (globus_sdk.TransferData method), 51
add_symlink_item() (globus_sdk.TransferData

method), 51
always_activated()

(globus_sdk.services.transfer.response.ActivationRequirementsResponse
property), 54

AuthClient (class in globus_sdk), 8

B
BaseClient (class in globus_sdk.client), 64
BasicAuthorizer (class in globus_sdk), 58
bookmark_list() (globus_sdk.TransferClient

method), 37
by_resource_server()

(globus_sdk.services.auth.token_response.OAuthTokenResponse
property), 17

by_scopes() (globus_sdk.services.auth.token_response.OAuthTokenResponse
property), 17

C
cancel_task() (globus_sdk.TransferClient method),

41

ClientCredentialsAuthorizer (class in
globus_sdk), 59

compute_delay() (globus_sdk.transport.RetryPolicy
method), 67

ConfidentialAppAuthClient (class in
globus_sdk), 13

create_bookmark() (globus_sdk.TransferClient
method), 37

create_endpoint() (globus_sdk.TransferClient
method), 31

create_entry() (globus_sdk.SearchClient method),
26

create_shared_endpoint()
(globus_sdk.TransferClient method), 34

D
data() (globus_sdk.services.transfer.paging.PaginatedResource

property), 55
decode_id_token()

(globus_sdk.services.auth.token_response.OAuthDependentTokenResponse
method), 18

decode_id_token()
(globus_sdk.services.auth.token_response.OAuthTokenResponse
method), 18

default_check_expired_authorization()
(globus_sdk.transport.RetryPolicy method), 68

default_check_max_retries_exceeded()
(globus_sdk.transport.RetryPolicy method), 67

default_check_request_exception()
(globus_sdk.transport.RetryPolicy method), 67

default_check_retry_after_header()
(globus_sdk.transport.RetryPolicy method), 68

default_check_transient_error()
(globus_sdk.transport.RetryPolicy method), 68

delete() (globus_sdk.client.BaseClient method), 64
delete_bookmark() (globus_sdk.TransferClient

method), 37
delete_by_query() (globus_sdk.SearchClient

method), 25
delete_endpoint() (globus_sdk.TransferClient

method), 31
delete_endpoint_acl_rule()

91

globus-sdk-python, Release 3.0.0a2

(globus_sdk.TransferClient method), 37
delete_endpoint_role()

(globus_sdk.TransferClient method), 35
delete_endpoint_server()

(globus_sdk.TransferClient method), 35
delete_entry() (globus_sdk.SearchClient method),

27
delete_subject() (globus_sdk.SearchClient

method), 25
DeleteData (class in globus_sdk), 52

E
endpoint_acl_list() (globus_sdk.TransferClient

method), 36
endpoint_activate() (globus_sdk.TransferClient

method), 33
endpoint_autoactivate()

(globus_sdk.TransferClient method), 32
endpoint_deactivate()

(globus_sdk.TransferClient method), 33
endpoint_get_activation_requirements()

(globus_sdk.TransferClient method), 33
endpoint_id() (globus_sdk.LocalGlobusConnectPersonal

property), 56
endpoint_manager_acl_list()

(globus_sdk.TransferClient method), 43
endpoint_manager_cancel_status()

(globus_sdk.TransferClient method), 47
endpoint_manager_cancel_tasks()

(globus_sdk.TransferClient method), 46
endpoint_manager_create_pause_rule()

(globus_sdk.TransferClient method), 48
endpoint_manager_delete_pause_rule()

(globus_sdk.TransferClient method), 49
endpoint_manager_get_endpoint()

(globus_sdk.TransferClient method), 43
endpoint_manager_get_pause_rule()

(globus_sdk.TransferClient method), 48
endpoint_manager_get_task()

(globus_sdk.TransferClient method), 45
endpoint_manager_hosted_endpoint_list()

(globus_sdk.TransferClient method), 43
endpoint_manager_monitored_endpoints()

(globus_sdk.TransferClient method), 43
endpoint_manager_pause_rule_list()

(globus_sdk.TransferClient method), 48
endpoint_manager_pause_tasks()

(globus_sdk.TransferClient method), 47
endpoint_manager_resume_tasks()

(globus_sdk.TransferClient method), 47
endpoint_manager_task_event_list()

(globus_sdk.TransferClient method), 45
endpoint_manager_task_list()

(globus_sdk.TransferClient method), 43

endpoint_manager_task_pause_info()
(globus_sdk.TransferClient method), 45

endpoint_manager_task_skipped_errors()
(globus_sdk.TransferClient method), 46

endpoint_manager_task_successful_transfers()
(globus_sdk.TransferClient method), 46

endpoint_manager_update_pause_rule()
(globus_sdk.TransferClient method), 49

endpoint_role_list()
(globus_sdk.TransferClient method), 35

endpoint_search() (globus_sdk.TransferClient
method), 31

endpoint_server_list()
(globus_sdk.TransferClient method), 34

exchange_code_for_tokens()
(globus_sdk.services.auth.GlobusAuthorizationCodeFlowManager
method), 21

exchange_code_for_tokens()
(globus_sdk.services.auth.GlobusNativeAppFlowManager
method), 19

exchange_code_for_tokens()
(globus_sdk.services.auth.oauth2_flow_manager.GlobusOAuthFlowManager
method), 21

EXPIRED_AUTHORIZATION_STATUS_CODES
(globus_sdk.transport.RetryPolicy attribute),
67

F
file_exists() (globus_sdk.tokenstorage.FileAdapter

method), 61
FileAdapter (class in globus_sdk.tokenstorage), 61
FormRequestEncoder (class in

globus_sdk.transport), 68

G
get() (globus_sdk.client.BaseClient method), 64
get() (globus_sdk.IdentityMap method), 17
get() (globus_sdk.response.GlobusHTTPResponse

method), 69
get_authorization_header()

(globus_sdk.authorizers.base.GlobusAuthorizer
method), 57

get_authorization_header()
(globus_sdk.authorizers.renewing.RenewingAuthorizer
method), 57

get_authorization_header()
(globus_sdk.NullAuthorizer method), 58

get_authorize_url()
(globus_sdk.services.auth.GlobusAuthorizationCodeFlowManager
method), 21

get_authorize_url()
(globus_sdk.services.auth.GlobusNativeAppFlowManager
method), 20

92 Index

globus-sdk-python, Release 3.0.0a2

get_authorize_url()
(globus_sdk.services.auth.oauth2_flow_manager.GlobusOAuthFlowManager
method), 21

get_bookmark() (globus_sdk.TransferClient
method), 37

get_by_resource_server()
(globus_sdk.tokenstorage.SimpleJSONFileAdapter
method), 62

get_by_resource_server()
(globus_sdk.tokenstorage.SQLiteAdapter
method), 63

get_endpoint() (globus_sdk.TransferClient
method), 30

get_endpoint_acl_rule()
(globus_sdk.TransferClient method), 36

get_endpoint_role() (globus_sdk.TransferClient
method), 35

get_endpoint_server()
(globus_sdk.TransferClient method), 34

get_entry() (globus_sdk.SearchClient method), 25
get_identities() (globus_sdk.AuthClient method),

9
get_index() (globus_sdk.SearchClient method), 23
get_jwk() (globus_sdk.AuthClient method), 12
get_openid_configuration()

(globus_sdk.AuthClient method), 12
get_subject() (globus_sdk.SearchClient method),

25
get_submission_id() (globus_sdk.TransferClient

method), 38
get_task() (globus_sdk.SearchClient method), 27
get_task() (globus_sdk.TransferClient method), 40
get_task_list() (globus_sdk.SearchClient

method), 27
get_token_data() (globus_sdk.tokenstorage.SimpleJSONFileAdapter

method), 62
get_token_data() (globus_sdk.tokenstorage.SQLiteAdapter

method), 63
get_token_data() (globus_sdk.tokenstorage.StorageAdapter

method), 61
globus_sdk.groups

module, 22
globus_sdk.search

module, 22
globus_sdk.services.transfer.response

module, 53
GlobusAPIError (class in globus_sdk), 70
GlobusAuthorizationCodeFlowManager (class

in globus_sdk.services.auth), 20
GlobusAuthorizer (class in

globus_sdk.authorizers.base), 57
GlobusConnectionError (class in globus_sdk), 71
GlobusConnectionTimeoutError (class in

globus_sdk), 71

GlobusError (class in globus_sdk), 70
GlobusHTTPResponse (class in

globus_sdk.response), 69
GlobusNativeAppFlowManager (class in

globus_sdk.services.auth), 19
GlobusOAuthFlowManager (class in

globus_sdk.services.auth.oauth2_flow_manager),
21

GlobusSDKUsageError (class in globus_sdk), 70
GlobusTimeoutError (class in globus_sdk), 71
GroupsAPIError (class in globus_sdk), 22
GroupsClient (class in globus_sdk), 22

H
handle_missing_authorization()

(globus_sdk.authorizers.base.GlobusAuthorizer
method), 57

handle_missing_authorization()
(globus_sdk.authorizers.renewing.RenewingAuthorizer
method), 57

I
IdentityMap (class in globus_sdk), 15
ingest() (globus_sdk.SearchClient method), 24
IterableTransferResponse (class in

globus_sdk.services.transfer.response), 54

J
JSONRequestEncoder (class in

globus_sdk.transport), 68

L
LocalGlobusConnectPersonal (class in

globus_sdk), 56

M
module

globus_sdk.groups, 22
globus_sdk.search, 22
globus_sdk.services.transfer.response,

53
my_effective_pause_rule_list()

(globus_sdk.TransferClient method), 34
my_shared_endpoint_list()

(globus_sdk.TransferClient method), 34

N
NativeAppAuthClient (class in globus_sdk), 12
NetworkError (class in globus_sdk), 71
NullAuthorizer (class in globus_sdk), 58

Index 93

globus-sdk-python, Release 3.0.0a2

O
oauth2_client_credentials_tokens()

(globus_sdk.ConfidentialAppAuthClient
method), 13

oauth2_exchange_code_for_tokens()
(globus_sdk.AuthClient method), 10

oauth2_get_authorize_url()
(globus_sdk.AuthClient method), 10

oauth2_get_dependent_tokens()
(globus_sdk.ConfidentialAppAuthClient
method), 14

oauth2_refresh_token() (globus_sdk.AuthClient
method), 10

oauth2_refresh_token()
(globus_sdk.NativeAppAuthClient method),
13

oauth2_revoke_token() (globus_sdk.AuthClient
method), 11

oauth2_start_flow()
(globus_sdk.ConfidentialAppAuthClient
method), 14

oauth2_start_flow()
(globus_sdk.NativeAppAuthClient method),
12

oauth2_token() (globus_sdk.AuthClient method), 11
oauth2_token_introspect()

(globus_sdk.ConfidentialAppAuthClient
method), 15

oauth2_userinfo() (globus_sdk.AuthClient
method), 12

oauth2_validate_token()
(globus_sdk.AuthClient method), 10

OAuthDependentTokenResponse (class in
globus_sdk.services.auth.token_response), 18

OAuthTokenResponse (class in
globus_sdk.services.auth.token_response),
17

on_refresh() (globus_sdk.tokenstorage.StorageAdapter
method), 61

operation_ls() (globus_sdk.TransferClient
method), 37

operation_mkdir() (globus_sdk.TransferClient
method), 38

operation_rename() (globus_sdk.TransferClient
method), 38

operation_symlink() (globus_sdk.TransferClient
method), 38

P
PaginatedResource (class in

globus_sdk.services.transfer.paging), 55
patch() (globus_sdk.client.BaseClient method), 65
post() (globus_sdk.client.BaseClient method), 64

post_search() (globus_sdk.SearchClient method),
23

put() (globus_sdk.client.BaseClient method), 65

R
raw_json() (globus_sdk.GlobusAPIError property),

71
raw_text() (globus_sdk.GlobusAPIError property),

71
read_config() (globus_sdk.tokenstorage.SQLiteAdapter

method), 62
RefreshTokenAuthorizer (class in globus_sdk),

58
register_check() (globus_sdk.transport.RetryPolicy

method), 67
register_default_checks()

(globus_sdk.transport.RetryPolicy method), 67
remove_config() (globus_sdk.tokenstorage.SQLiteAdapter

method), 62
remove_tokens_for_resource_server()

(globus_sdk.tokenstorage.SQLiteAdapter
method), 63

RenewingAuthorizer (class in
globus_sdk.authorizers.renewing), 57

request() (globus_sdk.client.BaseClient method), 65
request() (globus_sdk.transport.RequestsTransport

method), 66
RequestEncoder (class in globus_sdk.transport), 68
RequestsTransport (class in globus_sdk.transport),

66
RETRY_AFTER_STATUS_CODES

(globus_sdk.transport.RetryPolicy attribute),
67

retry_policy (globus_sdk.client.BaseClient at-
tribute), 64

RetryContext (class in globus_sdk.transport), 68
RetryPolicy (class in globus_sdk.transport), 66

S
search() (globus_sdk.SearchClient method), 23
SearchAPIError (class in globus_sdk), 28
SearchClient (class in globus_sdk), 22
SearchQuery (class in globus_sdk), 27
should_retry() (globus_sdk.transport.RetryPolicy

method), 67
SimpleJSONFileAdapter (class in

globus_sdk.tokenstorage), 61
SQLiteAdapter (class in globus_sdk.tokenstorage),

62
StorageAdapter (class in globus_sdk.tokenstorage),

61
store() (globus_sdk.tokenstorage.SimpleJSONFileAdapter

method), 61

94 Index

globus-sdk-python, Release 3.0.0a2

store() (globus_sdk.tokenstorage.SQLiteAdapter
method), 62

store_config() (globus_sdk.tokenstorage.SQLiteAdapter
method), 62

submit_delete() (globus_sdk.TransferClient
method), 39

submit_transfer() (globus_sdk.TransferClient
method), 39

supports_auto_activation()
(globus_sdk.services.transfer.response.ActivationRequirementsResponse
property), 54

supports_web_activation()
(globus_sdk.services.transfer.response.ActivationRequirementsResponse
property), 54

T
task_event_list() (globus_sdk.TransferClient

method), 40
task_list() (globus_sdk.TransferClient method), 39
task_pause_info() (globus_sdk.TransferClient

method), 41
task_skipped_errors()

(globus_sdk.TransferClient method), 42
task_successful_transfers()

(globus_sdk.TransferClient method), 42
task_wait() (globus_sdk.TransferClient method), 41
text() (globus_sdk.response.GlobusHTTPResponse

property), 69
TransferAPIError (class in globus_sdk), 53
TransferClient (class in globus_sdk), 28
TransferData (class in globus_sdk), 49
TRANSIENT_ERROR_STATUS_CODES

(globus_sdk.transport.RetryPolicy attribute),
67

U
update_bookmark() (globus_sdk.TransferClient

method), 37
update_endpoint() (globus_sdk.TransferClient

method), 30
update_endpoint_acl_rule()

(globus_sdk.TransferClient method), 36
update_endpoint_server()

(globus_sdk.TransferClient method), 35
update_entry() (globus_sdk.SearchClient method),

26
update_task() (globus_sdk.TransferClient method),

40
user_only_umask()

(globus_sdk.tokenstorage.FileAdapter method),
61

Index 95

	Table of Contents
	Python Module Index
	Index

