
globus-sdk-python Documentation
Release 1.7.1

Author

Mar 18, 2019

Contents

1 Table of Contents 3
1.1 Installation . 3
1.2 SDK Tutorial . 3

1.2.1 Step 1: Get a Client . 3
1.2.2 Step 2: Get and Save Client ID . 4
1.2.3 Step 3: Get Some Access Tokens! . 4
1.2.4 Step 4: Use Your Tokens, Talk to the Service . 5
1.2.5 Advanced Tutorial . 5

1.3 Service Clients . 7
1.3.1 Transfer Client . 8
1.3.2 Auth Client . 28
1.3.3 Search Client (BETA) . 34
1.3.4 Low Level API . 40
1.3.5 Multi-Thread and Multi-Process Safety . 42

1.4 Responses . 42
1.4.1 Generic Response Classes . 43
1.4.2 Service-Specific Response Classes . 43

1.5 Exceptions . 46
1.5.1 Error Classes . 47

1.6 Local Endpoints . 48
1.6.1 Globus Connect Server . 48
1.6.2 Globus Connect Personal . 49

1.7 Globus Auth / OAuth2 . 49
1.7.1 OAuth Flows . 50
1.7.2 Resource Servers and Scopes . 52

1.8 API Authorization . 53
1.8.1 The Authorizer Interface . 53
1.8.2 Authorizer Types . 54

1.9 Globus SDK Configuration . 56
1.9.1 Config Format . 57
1.9.2 Environment Variables . 57

1.10 Deprecations . 57
1.11 Globus SDK Examples . 57

1.11.1 API Authorization . 57
1.11.2 Native App Login . 59
1.11.3 Client Credentials Authentication . 60
1.11.4 Using ClientCredentialsAuthorizer . 62
1.11.5 Three Legged OAuth with Flask . 62

i

1.11.6 Advanced Transfer Client Usage . 65

2 License 69

Python Module Index 71

ii

globus-sdk-python Documentation, Release 1.7.1

This SDK provides a convenient Pythonic interface to Globus REST APIs, including the Transfer API and the Globus
Auth API. Documentation for the REST APIs is available at https://docs.globus.org.

Two interfaces are provided - a low level interface, supporting only GET, PUT, POST, and DELETE operations, and a
high level interface providing helper methods for common API resources.

Source code is available at https://github.com/globus/globus-sdk-python.

Contents 1

https://www.globus.org
https://docs.globus.org
https://github.com/globus/globus-sdk-python

globus-sdk-python Documentation, Release 1.7.1

2 Contents

CHAPTER 1

Table of Contents

1.1 Installation

The Globus SDK requires Python 2.7+ or 3.4+. If a supported version of Python is not already installed on your
system, see this Python installation guide .

The simplest way to install the Globus SDK is using the pip package manager (https://pypi.python.org/pypi/pip),
which is included in most Python installations:

pip install globus-sdk

This will install the Globus SDK and it’s dependencies.

Bleeding edge versions of the Globus SDK can be installed by checking out the git repository and installing it manu-
ally:

git clone https://github.com/globus/globus-sdk-python.git
cd globus-sdk-python
python setup.py install

1.2 SDK Tutorial

This is a tutorial in the use of the Globus SDK. It takes you through a simple step-by-step flow for registering your
application, getting tokens, and using them with our service.

These are the steps we will take:

1. Get a Client

2. Get and Save Client ID

3. Get Some Access Tokens!

4. Use Your Tokens, Talk to the Service

That should be enough to get you up and started. You can also proceed to the Advanced Tutorial steps to dig deeper
into the SDK.

1.2.1 Step 1: Get a Client

In order to complete an OAuth2 flow to get tokens, you must have a client or “app” definition registered with Globus.

3

https://www.python.org/
http://docs.python-guide.org/en/latest/starting/installation/
https://pypi.python.org/pypi/pip

globus-sdk-python Documentation, Release 1.7.1

Navigate to the Developer Site and select “Register your app with Globus.” You will be prompted to login – do so
with the account you wish to use as your app’s administrator.

When prompted, create a Project named “SDK Tutorial Project”. Projects let you share the administrative burden of a
collection of apps, but we won’t be sharing the SDK Tutorial Project.

In the “Add...” menu for “SDK Tutorial Project”, select “Add new app”.

Enter the following pieces of information:

• App Name: “SDK Tutorial App”

• Scopes: “openid”, “profile”, “email”, “urn:globus:auth:scope:transfer.api.globus.org:all“

• Redirects: https://auth.globus.org/v2/web/auth-code

• Required Identity Provider: <Leave Unchecked>

• Privacy Policy: <Leave Blank>

• Terms & Conditions: <Leave Blank>

• Native App: Check this Box

and click “Create App”.

1.2.2 Step 2: Get and Save Client ID

On the “Apps” screen you should now see all of your Projects, probably just “SDK Tutorial Project”, and all of the
Apps they contain, probably just “SDK Tutorial App”. Expand the dropdown for the tutorial App, and you should see
an array of attributes of your client, including the ones we specified in Step 1, and a bunch of new things.

We want to get the Client ID from this screen. Feel free to think of this as your App’s “username”. You can hardcode
it into scripts, store it in a config file, or even put it into a database. It’s non-secure information and you can treat it as
such.

In the rest of the tutorial we will assume in all code samples that it is available in the variable, CLIENT_ID.

1.2.3 Step 3: Get Some Access Tokens!

Talking to Globus Services as a user requires that you authenticate to your new App and get it Tokens, credentials
proving that you logged into it and gave it permission to access the service.

No need to worry about creating your own login pages and such – for this type of app, Globus provides all of that for
you. Run the following code sample to get your Access Tokens:

import globus_sdk

CLIENT_ID = '<YOUR_ID_HERE>'

client = globus_sdk.NativeAppAuthClient(CLIENT_ID)
client.oauth2_start_flow()

authorize_url = client.oauth2_get_authorize_url()
print('Please go to this URL and login: {0}'.format(authorize_url))

this is to work on Python2 and Python3 -- you can just use raw_input() or
input() for your specific version
get_input = getattr(__builtins__, 'raw_input', input)
auth_code = get_input(

'Please enter the code you get after login here: ').strip()

4 Chapter 1. Table of Contents

https://developers.globus.org
https://auth.globus.org/v2/web/auth-code

globus-sdk-python Documentation, Release 1.7.1

token_response = client.oauth2_exchange_code_for_tokens(auth_code)

globus_auth_data = token_response.by_resource_server['auth.globus.org']
globus_transfer_data = token_response.by_resource_server['transfer.api.globus.org']

most specifically, you want these tokens as strings
AUTH_TOKEN = globus_auth_data['access_token']
TRANSFER_TOKEN = globus_transfer_data['access_token']

Managing credentials is one of the more advanced features of the SDK. If you want to read in depth about these steps,
please look through our various Examples.

1.2.4 Step 4: Use Your Tokens, Talk to the Service

Continuing from the example above, you have two credentials to Globus Services on hand: the AUTH_TOKEN and the
TRANSFER_TOKEN. We’ll focus on the TRANSFER_TOKEN for now. It’s how you authorize access to the Globus
Transfer service.

a GlobusAuthorizer is an auxiliary object we use to wrap the token. In
more advanced scenarios, other types of GlobusAuthorizers give us
expressive power
authorizer = globus_sdk.AccessTokenAuthorizer(TRANSFER_TOKEN)
tc = globus_sdk.TransferClient(authorizer=authorizer)

high level interface; provides iterators for list responses
print("My Endpoints:")
for ep in tc.endpoint_search(filter_scope="my-endpoints"):

print("[{}] {}".format(ep["id"], ep["display_name"]))

Note that the TRANSFER_TOKEN is only valid for a limited time. You’ll have to login again when it expires.

1.2.5 Advanced Tutorial

In the first 4 steps of the Tutorial, we did a lot of hocus-pocus to procure Access Tokens, but we didn’t dive into how
we are getting them (or why they exist at all). Not only will we talk through more detail on Access Tokens, but we’ll
also explore more advanced use cases and their near-cousins, Refresh Tokens.

Advanced 1: Exploring the OAuthTokenResponse

We powered through the OAuth2 flow in the basic tutorial. It’s worth looking closer at the token response itself, as it
is of particular interest. This is the ultimate product of the flow, and it contains all of the credentials that we’ll want
and need moving forward.

Remember:

client = globus_sdk.NativeAppAuthClient(CLIENT_ID)
client.oauth2_start_flow()

print('Please go to this URL and login: {0}'
.format(client.oauth2_get_authorize_url()))

get_input = getattr(__builtins__, 'raw_input', input)
auth_code = get_input('Please enter the code here: ').strip()
token_response = client.oauth2_exchange_code_for_tokens(auth_code)

1.2. SDK Tutorial 5

globus-sdk-python Documentation, Release 1.7.1

Though it has a few attributes and methods, by far the most important thing about token_response to understand
is token_response.by_resource_server.

Let’s take a look at str(token_response.by_resource_server):

>>> str(token_response.by_resource_server)
{

"auth.globus.org": {
"access_token": "AQBX8YvVAAAAAAADxhAtF46RxjcFuoxN1oSOmEk-hBqvOejY4imMbZlC0B8THfoFuOK9rshN6TV7I0uwf0hb",
"scope": "openid email profile",
"token_type": "Bearer",
"expires_at_seconds": 1476121216,
"refresh_token": None

},
"transfer.api.globus.org": {
"access_token": "AQBX8YvVAAAAAAADxg-u9uULMyTkLw4_15ReO_f2E056wLqjAWeLP51pgakLxYmyUDfGTd4SnYCiRjFq3mnj",
"scope": "urn:globus:auth:scope:transfer.api.globus.org:all",
"token_type": "Bearer",
"expires_at_seconds": 1476121286,
"refresh_token": None

}
}

A token response is structured with the following info:

• Resource Servers: The services (e.x. APIs) which require Tokens. These are the keys, “auth.globus.org” and
“transfer.api.globus.org”

• Access Tokens: Credentials you can use to talk to Resource Servers. We get back separate Access Tokens for
each Resource Server. Importantly, this means that if Globus is issuing tokens to evil.api.example.com, you
don’t need to worry that evil.api.example.com will ever see tokens valid for Globus Transfer

• Scope: A list of activities that the Access Token is good for against the Resource Server. They are defined and
enforced by the Resource Server.

• token_type: With what kind of authorization should the Access Token be used? For the foreseeable future, all
Globus tokens are sent as Bearer Auth headers.

• expires_at_seconds: A POSIX timestamp – the time at which the relevant Access Token expires and is no longer
accepted by the service.

• Refresh Tokens: Credentials used to replace or “refresh” your access tokens when they expire. If requested,
you’ll get one for each Resource Server. Details on their usage are in the next Advanced Tutorial

Advanced 2: Refresh Tokens, Never Login Again

Logging in to Globus through the web interface gets pretty old pretty fast. In fact, as soon as you write your first
cron job against Globus, you’ll need something better. Enter Refresh Tokens: credentials which never expire unless
revoked, and which can be used to get new Access Tokens whenever those do expire.

Getting yourself refresh tokens to play with is actually pretty easy. Just tweak your login flow with one argument:

client = globus_sdk.NativeAppAuthClient(CLIENT_ID)
client.oauth2_start_flow(refresh_tokens=True)

print('Please go to this URL and login: {0}'
.format(client.oauth2_get_authorize_url()))

get_input = getattr(__builtins__, 'raw_input', input)

6 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

auth_code = get_input('Please enter the code here: ').strip()
token_response = client.oauth2_exchange_code_for_tokens(auth_code)

If you peek at the token_response now, you’ll see that the "refresh_token" fields are no longer nulled.

Now we’ve got a problem though: it’s great to say that you can refresh tokens whenever you want, but how do you
know when to do that? And what if an Access Token gets revoked before it’s ready to expire? It turns out that using
these correctly is pretty delicate, but there is a way forward that’s pretty much painless.

Let’s assume you want to do this with the globus_sdk.TransferClient.

let's get stuff for the Globus Transfer service
globus_transfer_data = token_response.by_resource_server['transfer.api.globus.org']
the refresh token and access token, often abbr. as RT and AT
transfer_rt = globus_transfer_data['refresh_token']
transfer_at = globus_transfer_data['access_token']
expires_at_s = globus_transfer_data['expires_at_seconds']

Now we've got the data we need, but what do we do?
That "GlobusAuthorizer" from before is about to come to the rescue

authorizer = globus_sdk.RefreshTokenAuthorizer(
transfer_rt, client, access_token=transfer_at, expires_at=expires_at_s)

and try using `tc` to make TransferClient calls. Everything should just
work -- for days and days, months and months, even years
tc = globus_sdk.TransferClient(authorizer=authorizer)

A couple of things to note about this: access_token and expires_at are optional arguments to
RefreshTokenAuthorizer. So, if all you’ve got on hand is a refresh token, it can handle the bootstrapping
problem. Also, it’s good to know that the RefreshTokenAuthorizer will retry the first call that fails with an
authorization error. If the second call also fails, it won’t try anymore.

Finally, and perhaps most importantly, we must stress that you need to protect your Refresh Tokens. They are an
infinite lifetime credential to act as you, so, like passwords, they should only be stored in secure locations.

1.3 Service Clients

The Globus SDK provides a client class for every public Globus API. Each client object takes authentication creden-
tials from config files, environment variables, or programmatically via GlobusAuthorizers.

Once instantiated, a Client gives you high-level interface to make API calls, without needing to know Globus API
endpoints or their various parameters.

For example, you could use the TransferClient to list your task history very simply:

from globus_sdk import TransferClient

you must have transfer_token in your config for this to work
tc = TransferClient()

print("My Last 25 Tasks:")
`filter` to get Delete Tasks (default is just Transfer Tasks)
for task in tc.task_list(num_results=25, filter="type:TRANSFER,DELETE"):

print(task["task_id"], task["type"], task["status"])

1.3. Service Clients 7

globus-sdk-python Documentation, Release 1.7.1

Client Types

1.3.1 Transfer Client

class globus_sdk.TransferClient(authorizer=None, **kwargs)
Bases: globus_sdk.base.BaseClient

Client for the Globus Transfer API.

This class provides helper methods for most common resources in the REST API, and basic get, put, post,
and delete methods from the base rest client that can be used to access any REST resource.

There are two types of helper methods: list methods which return an iterator of GlobusResponse objects,
and simple methods that return a single TransferResponse object.

Some calls are paginated. If a call returns a PaginatedResource object, the result is an iterator
which can only be walked once. If you need to do multiple passes over the result, call list() on the
PaginatedResource or call the original method again to get fresh results.

Detailed documentation is available in the official REST API documentation, which is linked to from the method
documentation. Methods that allow arbitrary keyword arguments will pass the extra arguments as query param-
eters.

Parameters authorizer (GlobusAuthorizer) – An authorizer instance used for all calls to
Globus Transfer

Methods

•get_endpoint()

•update_endpoint()

•create_endpoint()

•delete_endpoint()

•endpoint_search()

•endpoint_autoactivate()

•endpoint_deactivate()

•endpoint_activate()

•endpoint_get_activation_requirements()

•my_effective_pause_rule_list()

•my_shared_endpoint_list()

•create_shared_endpoint()

•endpoint_server_list()

•get_endpoint_server()

•add_endpoint_server()

•update_endpoint_server()

•delete_endpoint_server()

•endpoint_role_list()

•add_endpoint_role()

•get_endpoint_role()

8 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/

globus-sdk-python Documentation, Release 1.7.1

•delete_endpoint_role()

•endpoint_acl_list()

•get_endpoint_acl_rule()

•add_endpoint_acl_rule()

•update_endpoint_acl_rule()

•delete_endpoint_acl_rule()

•bookmark_list()

•create_bookmark()

•get_bookmark()

•update_bookmark()

•delete_bookmark()

•operation_ls()

•operation_mkdir()

•operation_rename()

•operation_symlink()

•get_submission_id()

•submit_transfer()

•submit_delete()

•task_list()

•task_event_list()

•get_task()

•update_task()

•cancel_task()

•task_wait()

•task_pause_info()

•task_successful_transfers()

•endpoint_manager_monitored_endpoints()

•endpoint_manager_hosted_endpoint_list()

•endpoint_manager_get_endpoint()

•endpoint_manager_acl_list()

•endpoint_manager_task_list()

•endpoint_manager_get_task()

•endpoint_manager_task_event_list()

•endpoint_manager_task_pause_info()

•endpoint_manager_task_successful_transfers()

•endpoint_manager_cancel_tasks()

1.3. Service Clients 9

globus-sdk-python Documentation, Release 1.7.1

•endpoint_manager_cancel_status()

•endpoint_manager_pause_tasks()

•endpoint_manager_resume_tasks()

•endpoint_manager_pause_rule_list()

•endpoint_manager_create_pause_rule()

•endpoint_manager_get_pause_rule()

•endpoint_manager_update_pause_rule()

•endpoint_manager_delete_pause_rule()

get_endpoint(endpoint_id, **params)
GET /endpoint/<endpoint_id>

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> endpoint = tc.get_endpoint(endpoint_id)
>>> print("Endpoint name:",
>>> endpoint["display_name"] or endpoint["canonical_name"])

External Documentation

See Get Endpoint by ID in the REST documentation for details.

update_endpoint(endpoint_id, data, **params)
PUT /endpoint/<endpoint_id>

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> epup = dict(display_name="My New Endpoint Name",
>>> description="Better Description")
>>> update_result = tc.update_endpoint(endpoint_id, epup)

External Documentation

See Update Endpoint by ID in the REST documentation for details.

create_endpoint(data)
POST /endpoint/<endpoint_id>

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> ep_data = {
>>> "DATA_TYPE": "endpoint",
>>> "display_name": display_name,
>>> "DATA": [
>>> {
>>> "DATA_TYPE": "server",
>>> "hostname": "gridftp.example.edu",
>>> },
>>>],
>>> }

10 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/endpoint/#get_endpoint_by_id
https://docs.globus.org/api/transfer/endpoint/#update_endpoint_by_id

globus-sdk-python Documentation, Release 1.7.1

>>> create_result = tc.create_endpoint(ep_data)
>>> endpoint_id = create_result["id"]

External Documentation

See Create endpoint in the REST documentation for details.

delete_endpoint(endpoint_id)
DELETE /endpoint/<endpoint_id>

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> delete_result = tc.delete_endpoint(endpoint_id)

External Documentation

See Delete endpoint by id in the REST documentation for details.

endpoint_search(filter_fulltext=None, filter_scope=None, num_results=25, **params)
GET /endpoint_search?filter_fulltext=<filter_fulltext>&filter_scope=<filter_scope>

Return type PaginatedResource, an iterable of GlobusResponse

Parameters

filter_fulltext (string) The string to use in a full text search on endpoints. Effectively,
the “search query” which is being requested.

filter_scope (string) A “scope” within which to search for endpoints. This must be one of
the limited and known names known to the service, which can be found documented in the
External Documentation below.

num_results (int or None) default 25 The number of search results to fetch from the service.
May be set to None to request the maximum allowable number of results.

params Any additional parameters will be passed through as query params.

Examples

Search for a given string as a fulltext search:

>>> tc = globus_sdk.TransferClient(...)
>>> for ep in tc.endpoint_search('String to search for!'):
>>> print(ep['display_name'])

Search for a given string, but only on endpoints that you own:

>>> for ep in tc.endpoint_search('foo', filter_scope='my-endpoints'):
>>> print('{0} has ID {1}'.format(ep['display_name'], ep['id']))

Search results are capped at a number of elements equal to the num_results parameter. If you want
more than the default, 25, elements, do like so:

>>> for ep in tc.endpoint_search('String to search for!',
>>> num_results=120):
>>> print(ep['display_name'])

It is important to be aware that the Endpoint Search API limits you to 1000 results for any search query.
You can request the maximum number of results either explicitly, with num_results=1000, or by
stating that you want no limit by setting it to None:

1.3. Service Clients 11

https://docs.globus.org/api/transfer/endpoint/#create_endpoint
https://docs.globus.org/api/transfer/endpoint/#delete_endpoint_by_id

globus-sdk-python Documentation, Release 1.7.1

>>> for ep in tc.endpoint_search('String to search for!',
>>> num_results=None):
>>> print(ep['display_name'])

External Documentation

For additional information, see Endpoint Search. in the REST documentation for details.

endpoint_autoactivate(endpoint_id, **params)
POST /endpoint/<endpoint_id>/autoactivate

Return type TransferResponse

The following example will try to “auto” activate the endpoint using a credential available from another
endpoint or sign in by the user with the same identity provider, but only if the endpoint is not already
activated or going to expire within an hour (3600 seconds). If that fails, direct the user to the globus
website to perform activation:

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> r = tc.endpoint_autoactivate(ep_id, if_expires_in=3600)
>>> while (r["code"] == "AutoActivationFailed"):
>>> print("Endpoint requires manual activation, please open "
>>> "the following URL in a browser to activate the "
>>> "endpoint:")
>>> print("https://www.globus.org/app/endpoints/%s/activate"
>>> % ep_id)
>>> # For python 2.X, use raw_input() instead
>>> input("Press ENTER after activating the endpoint:")
>>> r = tc.endpoint_autoactivate(ep_id, if_expires_in=3600)

This is the recommended flow for most thick client applications, because many endpoints require activation
via OAuth MyProxy, which must be done in a browser anyway. Web based clients can link directly to the
URL.

You also might want messaging or logging depending on why and how the operation succeeded, in which
case you’ll need to look at the value of the “code” field and either decide on your own messaging or use
the response’s “message” field.

>>> tc = globus_sdk.TransferClient(...)
>>> r = tc.endpoint_autoactivate(ep_id, if_expires_in=3600)
>>> if r['code'] == 'AutoActivationFailed':
>>> print('Endpoint({}) Not Active! Error! Source message: {}'
>>> .format(ep_id, r['message']))
>>> sys.exit(1)
>>> elif r['code'] == 'AutoActivated.CachedCredential':
>>> print('Endpoint({}) autoactivated using a cached credential.'
>>> .format(ep_id))
>>> elif r['code'] == 'AutoActivated.GlobusOnlineCredential':
>>> print(('Endpoint({}) autoactivated using a built-in Globus '
>>> 'credential.').format(ep_id))
>>> elif r['code'] = 'AlreadyActivated':
>>> print('Endpoint({}) already active until at least {}'
>>> .format(ep_id, 3600))

External Documentation

See Autoactivate endpoint in the REST documentation for details.

12 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/endpoint_search
https://docs.globus.org/api/transfer/endpoint_activation/#autoactivate_endpoint

globus-sdk-python Documentation, Release 1.7.1

endpoint_deactivate(endpoint_id, **params)
POST /endpoint/<endpoint_id>/deactivate

Return type TransferResponse

External Documentation

See Deactive endpoint in the REST documentation for details.

endpoint_activate(endpoint_id, requirements_data, **params)
POST /endpoint/<endpoint_id>/activate

Return type TransferResponse

Consider using autoactivate and web activation instead, described in the example for
endpoint_autoactivate().

External Documentation

See Activate endpoint in the REST documentation for details.

endpoint_get_activation_requirements(endpoint_id, **params)
GET /endpoint/<endpoint_id>/activation_requirements

Return type ActivationRequirementsResponse

External Documentation

See Get activation requirements in the REST documentation for details.

my_effective_pause_rule_list(endpoint_id, **params)
GET /endpoint/<endpoint_id>/my_effective_pause_rule_list

Return type IterableTransferResponse

External Documentation

See Get my effective endpoint pause rules in the REST documentation for details.

my_shared_endpoint_list(endpoint_id, **params)
GET /endpoint/<endpoint_id>/my_shared_endpoint_list

Return type IterableTransferResponse

External Documentation

See Get shared endpoint list in the REST documentation for details.

create_shared_endpoint(data)
POST /shared_endpoint

Parameters

data (dict) A python dict representation of a shared_endpoint document

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> shared_ep_data = {
>>> "DATA_TYPE": "shared_endpoint",
>>> "host_endpoint": host_endpoint_id,
>>> "host_path": host_path,
>>> "display_name": display_name,
>>> # optionally specify additional endpoint fields

1.3. Service Clients 13

https://docs.globus.org/api/transfer/endpoint_activation/#deactivate_endpoint
https://docs.globus.org/api/transfer/endpoint_activation/#activate_endpoint
https://docs.globus.org/api/transfer/endpoint_activation/#get_activation_requirements
https://docs.globus.org/api/transfer/endpoint/#get_endpoint_pause_rules
https://docs.globus.org/api/transfer/endpoint/#get_shared_endpoint_list

globus-sdk-python Documentation, Release 1.7.1

>>> "description": "my test share"
>>> }
>>> create_result = tc.create_shared_endpoint(shared_ep_data)
>>> endpoint_id = create_result["id"]

External Documentation

See Create shared endpoint in the REST documentation for details.

endpoint_server_list(endpoint_id, **params)
GET /endpoint/<endpoint_id>/server_list

Return type IterableTransferResponse

External Documentation

See Get endpoint server list in the REST documentation for details.

get_endpoint_server(endpoint_id, server_id, **params)
GET /endpoint/<endpoint_id>/server/<server_id>

Return type TransferResponse

External Documentation

See Get endpoint server by id in the REST documentation for details.

add_endpoint_server(endpoint_id, server_data)
POST /endpoint/<endpoint_id>/server

Return type TransferResponse

External Documentation

See Add endpoint server in the REST documentation for details.

update_endpoint_server(endpoint_id, server_id, server_data)
PUT /endpoint/<endpoint_id>/server/<server_id>

Return type TransferResponse

External Documentation

See Update endpoint server by id in the REST documentation for details.

delete_endpoint_server(endpoint_id, server_id)
DELETE /endpoint/<endpoint_id>/server/<server_id>

Return type TransferResponse

External Documentation

See Delete endpoint server by id in the REST documentation for details.

endpoint_role_list(endpoint_id, **params)
GET /endpoint/<endpoint_id>/role_list

Return type IterableTransferResponse

External Documentation

See Get list of endpoint roles in the REST documentation for details.

add_endpoint_role(endpoint_id, role_data)
POST /endpoint/<endpoint_id>/role

Return type TransferResponse

14 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/endpoint/#create_shared_endpoint
https://docs.globus.org/api/transfer/endpoint/#get_endpoint_server_list
https://docs.globus.org/api/transfer/endpoint/#get_endpoint_server_by_id
https://docs.globus.org/api/transfer/endpoint/#add_endpoint_server
https://docs.globus.org/api/transfer/endpoint/#update_endpoint_server_by_id
https://docs.globus.org/api/transfer/endpoint/#delete_endpoint_server_by_id
https://docs.globus.org/api/transfer/endpoint_roles/#role_list

globus-sdk-python Documentation, Release 1.7.1

External Documentation

See Create endpoint role in the REST documentation for details.

get_endpoint_role(endpoint_id, role_id, **params)
GET /endpoint/<endpoint_id>/role/<role_id>

Return type TransferResponse

External Documentation

See Get endpoint role by id in the REST documentation for details.

delete_endpoint_role(endpoint_id, role_id)
DELETE /endpoint/<endpoint_id>/role/<role_id>

Return type TransferResponse

External Documentation

See Delete endpoint role by id in the REST documentation for details.

endpoint_acl_list(endpoint_id, **params)
GET /endpoint/<endpoint_id>/access_list

Return type IterableTransferResponse

External Documentation

See Get list of access rules in the REST documentation for details.

get_endpoint_acl_rule(endpoint_id, rule_id, **params)
GET /endpoint/<endpoint_id>/access/<rule_id>

Return type TransferResponse

External Documentation

See Get access rule by id in the REST documentation for details.

add_endpoint_acl_rule(endpoint_id, rule_data)
POST /endpoint/<endpoint_id>/access

Parameters

endpoint_id (string) ID of endpoint to which to add the acl

rule_data (dict) A python dict representation of an access document

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> rule_data = {
>>> "DATA_TYPE": "access",
>>> "principal_type": "identity",
>>> "principal": identity_id,
>>> "path": "/dataset1/",
>>> "permissions": "rw",
>>> }
>>> result = tc.add_endpoint_acl_rule(endpoint_id, rule_data)
>>> rule_id = result["access_id"]

1.3. Service Clients 15

https://docs.globus.org/api/transfer/endpoint_roles/#create_role
https://docs.globus.org/api/transfer/endpoint_roles/#get_endpoint_role_by_id
https://docs.globus.org/api/transfer/endpoint_roles/#delete_endpoint_role_by_id
https://docs.globus.org/api/transfer/acl/#rest_access_get_list
https://docs.globus.org/api/transfer/acl/#get_access_rule_by_id

globus-sdk-python Documentation, Release 1.7.1

Note that if this rule is being created on a shared endpoint the “path” field is relative to the “host_path” of
the shared endpoint.

External Documentation

See Create access rule in the REST documentation for details.

update_endpoint_acl_rule(endpoint_id, rule_id, rule_data)
PUT /endpoint/<endpoint_id>/access/<rule_id>

Return type TransferResponse

External Documentation

See Update access rule in the REST documentation for details.

delete_endpoint_acl_rule(endpoint_id, rule_id)
DELETE /endpoint/<endpoint_id>/access/<rule_id>

Return type TransferResponse

External Documentation

See Delete access rule in the REST documentation for details.

bookmark_list(**params)
GET /bookmark_list

Return type IterableTransferResponse

External Documentation

See Get list of bookmarks in the REST documentation for details.

create_bookmark(bookmark_data)
POST /bookmark

Return type TransferResponse

External Documentation

See Create bookmark in the REST documentation for details.

get_bookmark(bookmark_id, **params)
GET /bookmark/<bookmark_id>

Return type TransferResponse

External Documentation

See Get bookmark by id in the REST documentation for details.

update_bookmark(bookmark_id, bookmark_data)
PUT /bookmark/<bookmark_id>

Return type TransferResponse

External Documentation

See Update bookmark in the REST documentation for details.

delete_bookmark(bookmark_id)
DELETE /bookmark/<bookmark_id>

Return type TransferResponse

External Documentation

See Delete bookmark by id in the REST documentation for details.

16 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/acl/#rest_access_create
https://docs.globus.org/api/transfer/acl/#update_access_rule
https://docs.globus.org/api/transfer/acl/#delete_access_rule
https://docs.globus.org/api/transfer/endpoint_bookmarks/#get_list_of_bookmarks
https://docs.globus.org/api/transfer/endpoint_bookmarks/#create_bookmark
https://docs.globus.org/api/transfer/endpoint_bookmarks/#get_bookmark_by_id
https://docs.globus.org/api/transfer/endpoint_bookmarks/#update_bookmark
https://docs.globus.org/api/transfer/endpoint_bookmarks/#delete_bookmark_by_id

globus-sdk-python Documentation, Release 1.7.1

operation_ls(endpoint_id, **params)
GET /operation/endpoint/<endpoint_id>/ls

Return type IterableTransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> for entry in tc.operation_ls(ep_id, path="/~/project1/"):
>>> print(entry["name"], entry["type"])

External Documentation

See List Directory Contents in the REST documentation for details.

operation_mkdir(endpoint_id, path, **params)
POST /operation/endpoint/<endpoint_id>/mkdir

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> tc.operation_mkdir(ep_id, path="/~/newdir/")

External Documentation

See Make Directory in the REST documentation for details.

operation_rename(endpoint_id, oldpath, newpath, **params)
POST /operation/endpoint/<endpoint_id>/rename

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> tc.operation_rename(ep_id, oldpath="/~/file1.txt",
>>> newpath="/~/project1data.txt")

External Documentation

See Rename in the REST documentation for details.

operation_symlink(endpoint_id, symlink_target, path, **params)
POST /operation/endpoint/<endpoint_id>/symlink

Return type TransferResponse

The path is the name of the symlink, and the symlink_target is the path referenced by the symlink.

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> tc.operation_symlink(ep_id, symlink_target="/~/file1.txt",
>>> path="/~/link-to-file1.txt")

External Documentation

See Symlink in the REST documentation for details.

get_submission_id(**params)
GET /submission_id

Return type TransferResponse

1.3. Service Clients 17

https://docs.globus.org/api/transfer/file_operations/#list_directory_contents
https://docs.globus.org/api/transfer/file_operations/#make_directory
https://docs.globus.org/api/transfer/file_operations/#rename
https://docs.globus.org/api/transfer/file_operations/#symlink

globus-sdk-python Documentation, Release 1.7.1

Submission IDs are required to submit tasks to the Transfer service via the submit_transfer and
submit_delete methods.

Most users will not need to call this method directly, as the convenience classes TransferData and
DeleteData will call it automatically if they are not passed a submission_id explicitly.

External Documentation

See Get a submission id in the REST documentation for more details.

submit_transfer(data)
POST /transfer

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> tdata = globus_sdk.TransferData(tc, source_endpoint_id,
>>> destination_endpoint_id,
>>> label="SDK example",
>>> sync_level="checksum")
>>> tdata.add_item("/source/path/dir/", "/dest/path/dir/",
>>> recursive=True)
>>> tdata.add_item("/source/path/file.txt",
>>> "/dest/path/file.txt")
>>> transfer_result = tc.submit_transfer(tdata)
>>> print("task_id =", transfer_result["task_id"])

The data parameter can be a normal Python dictionary, or a TransferData object.

External Documentation

See Submit a transfer task in the REST documentation for more details.

submit_delete(data)
POST /delete

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> ddata = globus_sdk.DeleteData(tc, endpoint_id, recursive=True)
>>> ddata.add_item("/dir/to/delete/")
>>> ddata.add_item("/file/to/delete/file.txt")
>>> delete_result = tc.submit_delete(ddata)
>>> print("task_id =", delete_result["task_id"])

The data parameter can be a normal Python dictionary, or a DeleteData object.

External Documentation

See Submit a delete task in the REST documentation for details.

task_list(num_results=10, **params)
Get an iterable of task documents owned by the current user.

GET /task_list

Return type PaginatedResource, an iterable of GlobusResponse

Parameters

18 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/task_submit/#get_submission_id
https://docs.globus.org/api/transfer/task_submit/#submit_transfer_task
https://docs.globus.org/api/transfer/task_submit/#submit_delete_task

globus-sdk-python Documentation, Release 1.7.1

num_results (int or None) default 10 The number of tasks to fetch from the service. May
be set to None to request the maximum allowable number of results.

params Any additional parameters will be passed through as query params.

Examples

Fetch the default number (10) of tasks and print some basic info:

>>> tc = TransferClient(...)
>>> for task in tc.task_list():
>>> print("Task({}): {} -> {}".format(
>>> task["task_id"], task["source_endpoint"],
>>> task["destination_endpoint"]))

External Documentation

See Task list in the REST documentation for details.

task_event_list(task_id, num_results=10, **params)
List events (for example, faults and errors) for a given Task.

GET /task/<task_id>/event_list

Return type PaginatedResource, an iterable of GlobusResponse

Parameters

task_id (string) The task to inspect.

num_results (int or None) default 10 The number of events to fetch from the service. May
be set to None to request the maximum allowable number of results.

params Any additional parameters will be passed through as query params.

Examples

Fetch the default number (10) of events and print some basic info:

>>> tc = TransferClient(...)
>>> task_id = ...
>>> for event in tc.task_event_list(task_id):
>>> print("Event on Task({}) at {}:\n{}".format(
>>> task_id, event["time"], event["description"])

External Documentation

See Get event list in the REST documentation for details.

get_task(task_id, **params)
GET /task/<task_id>

Return type TransferResponse

External Documentation

See Get task by id in the REST documentation for details.

update_task(task_id, data, **params)
PUT /task/<task_id>

Return type TransferResponse

External Documentation

See Update task by id in the REST documentation for details.

1.3. Service Clients 19

https://docs.globus.org/api/transfer/task/#get_task_list
https://docs.globus.org/api/transfer/task/#get_event_list
https://docs.globus.org/api/transfer/task/#get_task_by_id
https://docs.globus.org/api/transfer/task/#update_task_by_id

globus-sdk-python Documentation, Release 1.7.1

cancel_task(task_id)
POST /task/<task_id>/cancel

Return type TransferResponse

External Documentation

See Cancel task by id in the REST documentation for details.

task_wait(task_id, timeout=10, polling_interval=10)
Wait until a Task is complete or fails, with a time limit. If the task is “ACTIVE” after time runs out, returns
False. Otherwise returns True.

Parameters

task_id (string) ID of the Task to wait on for completion

timeout (int) Number of seconds to wait in total. Minimum 1

polling_interval (int) Number of seconds between queries to Globus about the Task sta-
tus. Minimum 1

Examples

If you want to wait for a task to terminate, but want to warn every minute that it doesn’t terminate, you
could:

>>> tc = TransferClient(...)
>>> while not tc.task_wait(task_id, timeout=60):
>>> print("Another minute went by without {0} terminating"
>>> .format(task_id))

Or perhaps you want to check on a task every minute for 10 minutes, and give up if it doesn’t complete in
that time:

>>> tc = TransferClient(...)
>>> done = tc.task_wait(task_id, timeout=600, polling_interval=60):
>>> if not done:
>>> print("{0} didn't successfully terminate!"
>>> .format(task_id))
>>> else:
>>> print("{0} completed".format(task_id))

You could print dots while you wait for a task by only waiting one second at a time:

>>> tc = TransferClient(...)
>>> while not tc.task_wait(task_id, timeout=1, polling_interval=1):
>>> print(".", end="")
>>> print("\n{0} completed!".format(task_id))

task_pause_info(task_id, **params)
GET /task/<task_id>/pause_info

Return type TransferResponse

External Documentation

See Get task pause info in the REST documentation for details.

task_successful_transfers(task_id, num_results=100, **params)
Get the successful file transfers for a completed Task.

GET /task/<task_id>/successful_transfers

Return type PaginatedResource, an iterable of GlobusResponse

20 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/task/#cancel_task_by_id
https://docs.globus.org/api/transfer/task/#get_task_pause_info

globus-sdk-python Documentation, Release 1.7.1

Parameters

task_id (string) The task to inspect.

num_results (int or None) default 100 The number of file transfer records to fetch from the
service. May be set to None to request the maximum allowable number of results.

params Any additional parameters will be passed through as query params.

Examples

Fetch all transferred files for a task and print some basic info:

>>> tc = TransferClient(...)
>>> task_id = ...
>>> for info in tc.task_successful_transfers(task_id):
>>> print("{} -> {}".format(
>>> info["source_path"], info["destination_path"))

External Documentation

See Get Task Successful Transfers in the REST documentation for details.

endpoint_manager_monitored_endpoints(**params)
Get endpoints the current user is a monitor or manager on.

GET endpoint_manager/monitored_endpoints

Return type iterable of GlobusResponse

See Get monitored endpoints in the REST documentation for details.

endpoint_manager_hosted_endpoint_list(endpoint_id, **params)
Get shared endpoints hosted on the given endpoint.

GET /endpoint_manager/endpoint/<endpoint_id>/hosted_endpoint_list

Return type iterable of GlobusResponse

See Get hosted endpoint list in the REST documentation for details.

endpoint_manager_get_endpoint(endpoint_id, **params)
Get endpoint details as an admin.

GET /endpoint_manager/endpoint/<endpoint_id>

Return type TransferResponse

External Documentation

See Get endpoint as admin in the REST documentation for details.

endpoint_manager_acl_list(endpoint_id, **params)
Get a list of access control rules on specified endpoint as an admin.

GET endpoint_manager/endpoint/<endpoint_id>/access_list

Return type IterableTransferResponse

External Documentation

See Get endpoint access list as admin in the REST documentation for details.

endpoint_manager_task_list(num_results=10, **params)
Get a list of tasks visible via activity_monitor role, as opposed to tasks owned by the current user.

GET endpoint_manager/task_list

1.3. Service Clients 21

https://docs.globus.org/api/transfer/task/#get_task_successful_transfers
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_monitored_endpoints
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_hosted_endpoint_list
https://docs.globus.org/api/transfer/advanced_endpoint_management/#mc_get_endpoint
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_endpoint_access_list_as_admin

globus-sdk-python Documentation, Release 1.7.1

Return type PaginatedResource, an iterable of GlobusResponse

Parameters

num_results (int or None) default 10 The number of tasks to fetch from the service. May
be set to None to request the maximum allowable number of results.

params Any additional parameters will be passed through as query params.

Examples

Fetch the default number (10) of tasks and print some basic info:

>>> tc = TransferClient(...)
>>> for task in tc.endpoint_manager_task_list():
>>> print("Task({}): {} -> {}\n was submitted by\n {}".format(
>>> task["task_id"], task["source_endpoint"],
>>> task["destination_endpoint"), task["owner_string"])

Do that same operation on all tasks visible via activity_monitor status:

>>> tc = TransferClient(...)
>>> for task in tc.endpoint_manager_task_list(num_results=None):
>>> print("Task({}): {} -> {}\n was submitted by\n {}".format(
>>> task["task_id"], task["source_endpoint"],
>>> task["destination_endpoint"), task["owner_string"])

External Documentation

See Advanced Endpoint Management: Get tasks in the REST documentation for details.

endpoint_manager_get_task(task_id, **params)
Get task info as an admin. Requires activity monitor effective role on the destination endpoint of the task.

GET /endpoint_manager/task/<task_id>

Return type TransferResponse

External Documentation

See Get task as admin in the REST documentation for details.

endpoint_manager_task_event_list(task_id, num_results=10, **params)
List events (for example, faults and errors) for a given task as an admin. Requires activity monitor effective
role on the destination endpoint of the task.

GET /task/<task_id>/event_list

Return type PaginatedResource, an iterable of GlobusResponse

Parameters

task_id (string) The task to inspect.

num_results (int or None) default 10 The number of events to fetch from the service. May
be set to None to request the maximum allowable number of results.

params Any additional parameters will be passed through as query params.

External Documentation

See Get task events as admin in the REST documentation for details.

endpoint_manager_task_pause_info(task_id, **params)
Get details about why a task is paused as an admin. Requires activity monitor effective role on the desti-
nation endpoint of the task.

22 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_tasks
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_task
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_task_events

globus-sdk-python Documentation, Release 1.7.1

GET /endpoint_manager/task/<task_id>/pause_info

Return type TransferResponse

External Documentation

See Get task pause info as admin in the REST documentation for details.

endpoint_manager_task_successful_transfers(task_id, num_results=100, **params)
Get the successful file transfers for a completed Task as an admin.

GET /endpoint_manager/task/<task_id>/successful_transfers

Return type PaginatedResource, an iterable of GlobusResponse

Parameters

task_id (string) The task to inspect.

num_results (int or None) default 100 The number of file transfer records to fetch from the
service. May be set to None to request the maximum allowable number of results.

params Any additional parameters will be passed through as query params.

External Documentation

See Get task successful transfers as admin in the REST documentation for details.

endpoint_manager_cancel_tasks(task_ids, message, **params)
Cancel a list of tasks as an admin. Requires activity manager effective role on the task(s) source or desti-
nation endpoint(s).

POST /endpoint_manager/admin_cancel

Return type TransferResponse

Parameters

task_ids (list of string) List of task ids to cancel.

message (string) Message given to all users who’s tasks have been canceled.

params Any additional parameters will be passed through as query params.

External Documentation

See Cancel tasks as admin in the REST documentation for details.

endpoint_manager_cancel_status(admin_cancel_id, **params)
Get the status of an an admin cancel (result of endpoint_manager_cancel_tasks).

GET /endpoint_manager/admin_cancel/<admin_cancel_id>

Return type TransferResponse

Parameters

admin_cancel_id (string) The ID of the the cancel to inspect.

params Any additional parameters will be passed through as query params.

External Documentation

See Get cancel status by id in the REST documentation for details.

endpoint_manager_pause_tasks(task_ids, message, **params)
Pause a list of tasks as an admin. Requires activity manager effective role on the task(s) source or destina-
tion endpoint(s).

1.3. Service Clients 23

https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_task_pause_info_as_admin
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_task_successful_transfers_as_admin
https://docs.globus.org/api/transfer/advanced_endpoint_management/#admin_cancel
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_cancel_status_by_id

globus-sdk-python Documentation, Release 1.7.1

POST /endpoint_manager/admin_pause

Return type TransferResponse

Parameters

task_ids (list of string) List of task ids to pause.

message (string) Message given to all users who’s tasks have been paused.

params Any additional parameters will be passed through as query params.

External Documentation

See Pause tasks as admin in the REST documentation for details.

endpoint_manager_resume_tasks(task_ids, **params)
Resume a list of tasks as an admin. Requires activity manager effective role on the task(s) source or
destination endpoint(s).

POST /endpoint_manager/admin_resume

Return type TransferResponse

Parameters

task_ids (list of string) List of task ids to resume.

params Any additional parameters will be passed through as query params.

External Documentation

See Resume tasks as admin in the REST documentation for details.

endpoint_manager_pause_rule_list(filter_endpoint=None, **params)
Get a list of pause rules on endpoints that the current user has the activity monitor effective role on.

GET /endpoint_manager/pause_rule_list

Return type IterableTransferResponse

Parameters

filter_endpoint (string) Limit results to pause rules on this endpoint.

filter_endpoint (string) Limit results to rules on endpoints hosted by this endpoint. Must
be activity monitor on this endpoint, not just the hosted endpoints.

params Any additional parameters will be passed through as query params.

External Documentation

See Get pause rules in the REST documentation for details.

endpoint_manager_create_pause_rule(data)
Create a new pause rule. Requires the activity manager effective role on the endpoint defined in the rule.

POST /endpoint_manager/pause_rule

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> rule_data = {
>>> "DATA_TYPE": "pause_rule",
>>> "message": "Message to users explaining why tasks are paused",
>>> "endpoint_id": "339abc22-aab3-4b45-bb56-8d40535bfd80",
>>> "identity_id": None, # affect all users on endpoint

24 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/advanced_endpoint_management/#pause_tasks_as_admin
https://docs.globus.org/api/transfer/advanced_endpoint_management/#resume_tasks_as_admin
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_pause_rules

globus-sdk-python Documentation, Release 1.7.1

>>> "start_time": None # start now
>>> }
>>> create_result = tc.endpoint_manager_create_pause_rule(ep_data)
>>> rule_id = create_result["id"]

External Documentation

See Create pause rule in the REST documentation for details.

endpoint_manager_get_pause_rule(pause_rule_id, **params)

Get an existing pause rule by ID. Requires the activity manager effective role on the endpoint
defined in the rule.

GET /endpoint_manager/pause_rule/<pause_rule_id>

rtype TransferResponse

Parameters

pause_rule_id (string) ID of pause rule to get.

params Any additional parameters will be passed through as query params.

External Documentation

See Get pause rule in the REST documentation for details.

endpoint_manager_update_pause_rule(pause_rule_id, data)
Update an existing pause rule by ID. Requires the activity manager effective role on the endpoint defined
in the rule. Note that non update-able fields in data will be ignored.

PUT /endpoint_manager/pause_rule/<pause_rule_id>

Return type TransferResponse

Examples

>>> tc = globus_sdk.TransferClient(...)
>>> rule_data = {
>>> "message": "Update to pause, reads are now allowed.",
>>> "pause_ls": False,
>>> "pause_task_transfer_read": False
>>> }
>>> update_result = tc.endpoint_manager_update_pause_rule(ep_data)

External Documentation

See Update pause rule in the REST documentation for details.

endpoint_manager_delete_pause_rule(pause_rule_id, **params)

Delete an existing pause rule by ID. Requires the user to see the “editible” field of the rule as
True. Any tasks affected by this rule will no longer be once it is deleted.

DELETE /endpoint_manager/pause_rule/<pause_rule_id>

rtype TransferResponse

Parameters

pause_rule_id (string) ID of pause rule to delete.

params Any additional parameters will be passed through as query params.

External Documentation

1.3. Service Clients 25

https://docs.globus.org/api/transfer/advanced_endpoint_management/#create_pause_rule
https://docs.globus.org/api/transfer/advanced_endpoint_management/#get_pause_rule
https://docs.globus.org/api/transfer/advanced_endpoint_management/#update_pause_rule

globus-sdk-python Documentation, Release 1.7.1

See Delete pause rule in the REST documentation for details.

Helper Objects

class globus_sdk.TransferData(transfer_client, source_endpoint, destination_endpoint, label=None,
submission_id=None, sync_level=None, verify_checksum=False,
preserve_timestamp=False, encrypt_data=False, deadline=None,
recursive_symlinks=u’ignore’, **kwargs)

Bases: dict

Convenience class for constructing a transfer document, to use as the data parameter to submit_transfer.

At least one item must be added using add_item.

If submission_id isn’t passed, one will be fetched automatically. The submission ID can be pulled out of
here to inspect, but the document can be used as-is multiple times over to retry a potential submission failure
(so there shouldn’t be any need to inspect it).

Parameters

transfer_client (TransferClient) A TransferClient instance which will be used
to get a submission ID if one is not supplied. Should be the same instance that is used to submit
the transfer.

source_endpoint (string) The endpoint ID of the source endpoint

destination_endpoint (string) The endpoint ID of the destination endpoint

label (string) [optional] A string label for the Task

submission_id (string) [optional] A submission ID value fetched via
get_submission_id. Defaults to using transfer_client.get_submission_id

sync_level (int or string) [optional] For compatibility with older code and those knowledge-
able about the API sync_level can be 0, 1, 2, or 3, but it can also be "exists", "size",
"mtime", or "checksum" if you want greater clarity in client code.

verify_checksum (bool) [default: False] When true, perform additional integrity checks on
each file after it is transferred. This will create CPU load on both the origin and destination of
the transfer, and may even be a bottleneck if the network speed is high enough.

preserve_timestamp (bool) [default: False] When true, Globus Transfer will attempt to set
file timestamps on the destination to match those on the origin.

encrypt_data (bool) [default: False] When true, all files will be TLS-protected during trans-
fer.

deadline (string or datetime) [optional] An ISO-8601 timestamp (as a string) or a datetime ob-
ject which defines a deadline for the transfer. At the deadline, even if the data transfer is not
complete, the job will be canceled. We recommend ensuring that the timestamp is in UTC to
avoid confusion and ambiguity.

Examples of ISO-8601 timestamps include 2017-10-12 09:30Z, 2017-10-12
12:33:54+00:00, and 2017-10-12

recursive_symlinks (string) [default: "ignore"] Specify the behavior of recursive direc-
tory transfers when encountering symlinks. One of "ignore", "keep", or "copy".
"ignore" skips symlinks, "keep" creates symlinks at the destination matching the source
(without modifying the link path at all), and "copy" follows symlinks on the source, failing if
the link is invalid.

26 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/advanced_endpoint_management/#delete_pause_rule

globus-sdk-python Documentation, Release 1.7.1

Any additional parameters are fed into the dict being created verbatim.

Examples

See the submit_transfer documentation for example usage.

add_item(source_path, destination_path, recursive=False, **params)
Add a file or directory to be transfered. If the item is a symlink to a file or directory, the file or directory at
the target of the symlink will be transfered.

Appends a transfer_item document to the DATA key of the transfer document.

add_symlink_item(source_path, destination_path)
Add a symlink to be transfered as a symlink rather than as the target of the symlink.

Appends a transfer_symlink_item document to the DATA key of the transfer document.

class globus_sdk.DeleteData(transfer_client, endpoint, label=None, submission_id=None, recur-
sive=False, deadline=None, **kwargs)

Bases: dict

Convenience class for constructing a delete document, to use as the data parameter to submit_delete.

At least one item must be added using add_item.

If submission_id isn’t passed, one will be fetched automatically. The submission ID can be pulled out of
here to inspect, but the document can be used as-is multiple times over to retry a potential submission failure
(so there shouldn’t be any need to inspect it).

Parameters

transfer_client (TransferClient) A TransferClient instance which will be used
to get a submission ID if one is not supplied. Should be the same instance that is used to submit
the deletion.

endpoint (string) The endpoint ID which is targeted by this deletion Task

label (string) [optional] A string label for the Task

submission_id (string) [optional] A submission ID value fetched via
get_submission_id. Defaults to using transfer_client.get_submission_id

recursive (bool) [default: False] Recursively delete subdirectories on the target endpoint

deadline (string or datetime) [optional] An ISO-8601 timestamp (as a string) or a datetime ob-
ject which defines a deadline for the transfer. At the deadline, even if the data deletion is not
complete, the job will be canceled. We recommend ensuring that the timestamp is in UTC to
avoid confusion and ambiguity.

Examples of ISO-8601 timestamps include 2017-10-12 09:30Z, 2017-10-12
12:33:54+00:00, and 2017-10-12

Examples

See the submit_delete documentation for example usage.

add_item(path, **params)
Add a file or directory or symlink to be deleted. If any of the paths are directories, recursive must be
set True on the top level DeleteData. Symlinks will never be followed, only deleted.

Appends a delete_item document to the DATA key of the delete document.

1.3. Service Clients 27

globus-sdk-python Documentation, Release 1.7.1

Specialized Errors

class globus_sdk.exc.TransferAPIError(r)
Bases: globus_sdk.exc.GlobusAPIError

Error class for the Transfer API client. In addition to the inherited code and message instance variables,
provides:

Variables request_id – Unique identifier for the request, which should be provided when con-
tacting support@globus.org.

1.3.2 Auth Client

class globus_sdk.AuthClient(client_id=None, authorizer=None, **kwargs)
Bases: globus_sdk.base.BaseClient

Client for the Globus Auth API

This class provides helper methods for most common resources in the Auth API, and the common low-level
interface from BaseClient of get, put, post, and delete methods, which can be used to access any API
resource.

There are generally two types of resources, distinguished by the type of authentication which they use. Re-
sources available to end users of Globus are authenticated with a Globus Auth Token (“Authentication: Bearer
...”), while resources available to OAuth Clients are authenticated using Basic Auth with the Client’s ID and
Secret. Some resources may be available with either authentication type.

Examples

Initializing an AuthClient to authenticate a user making calls to the Globus Auth service with an access
token takes the form

>>> from globus_sdk import AuthClient, AccessTokenAuthorizer
>>> ac = AuthClient(authorizer=AccessTokenAuthorizer('<token_string>'))

You can, of course, use other kinds of Authorizers (notably the RefreshTokenAuthorizer).

Methods

•get_identities()

•oauth2_get_authorize_url()

•oauth2_exchange_code_for_tokens()

•AuthClient.oauth2_refresh_token()

•oauth2_validate_token()

•oauth2_revoke_token()

•oauth2_token()

•oauth2_userinfo()

get_identities(usernames=None, ids=None, provision=False, **params)
GET /v2/api/identities

Given usernames=<U> or (exclusive) ids=<I> as keyword arguments, looks up identity information
for the set of identities provided. <U> and <I> in this case are comma-delimited strings listing multiple
Identity Usernames or Identity IDs, or iterables of strings, each of which is an Identity Username or
Identity ID.

28 Chapter 1. Table of Contents

mailto:support@globus.org
https://docs.globus.org/api/auth/

globus-sdk-python Documentation, Release 1.7.1

If Globus Auth’s identity auto-provisioning behavior is desired, provision=True may be specified.

Available with any authentication/client type.

Examples

>>> ac = globus_sdk.AuthClient(...)
>>> # by IDs
>>> r = ac.get_identities(ids="46bd0f56-e24f-11e5-a510-131bef46955c")
>>> r.data
{u'identities': [{u'email': None,

u'id': u'46bd0f56-e24f-11e5-a510-131bef46955c',
u'identity_provider': u'7daddf46-70c5-45ee-9f0f-7244fe7c8707',
u'name': None,
u'organization': None,
u'status': u'unused',
u'username': u'globus@globus.org'}]}

>>> ac.get_identities(
>>> ids=",".join(
>>> ("46bd0f56-e24f-11e5-a510-131bef46955c",
>>> "168edc3d-c6ba-478c-9cf8-541ff5ebdc1c"))
...
>>> # or by usernames
>>> ac.get_identities(usernames='globus@globus.org')
...
>>> ac.get_identities(
>>> usernames='globus@globus.org,auth@globus.org')
...

You could also use iterables:

>>> ac.get_identities(
>>> usernames=['globus@globus.org', 'auth@globus.org'])
...
>>> ac.get_identities(
>>> ids=["46bd0f56-e24f-11e5-a510-131bef46955c",
>>> "168edc3d-c6ba-478c-9cf8-541ff5ebdc1c"])
...

External Documentation

See Identities Resources in the API documentation for details.

oauth2_get_authorize_url(additional_params=None)
Get the authorization URL to which users should be sent. This method may only be called after
oauth2_start_flow has been called on this AuthClient.

Parameters

additional_params (dict) A dict or None, which specifies additional query parameters
to include in the authorize URL. Primarily for internal use

Return type string

oauth2_exchange_code_for_tokens(auth_code)
Exchange an authorization code for a token or tokens.

Return type OAuthTokenResponse

auth_code An auth code typically obtained by sending the user to the authorize URL. The code is a
very short-lived credential which this method is exchanging for tokens. Tokens are the credentials

1.3. Service Clients 29

https://docs.globus.org/api/auth/reference/#v2_api_identities_resources

globus-sdk-python Documentation, Release 1.7.1

used to authenticate against Globus APIs.

oauth2_refresh_token(refresh_token, additional_params=None)
Exchange a refresh token for a OAuthTokenResponse, containing an access token.

Does a token call of the form

refresh_token=<refresh_token>
grant_type=refresh_token

plus any additional parameters you may specify.

refresh_token A raw Refresh Token string

additional_params A dict of extra params to encode in the refresh call.

oauth2_validate_token(token, additional_params=None)
Validate a token. It can be an Access Token or a Refresh token.

This call can be used to check tokens issued to your client, confirming that they are or are not still valid.
The resulting response has the form {"active": True} when the token is valid, and {"active":
False} when it is not.

It is not necessary to validate tokens immediately after receiving them from the service – any tokens which
you are issued will be valid at that time. This is more for the purpose of doing checks like

•confirm that oauth2_revoke_token succeeded

•at application boot, confirm no need to do fresh login

Parameters

token (string) The token which should be validated. Can be a refresh token or an access token

additional_params (dict) A dict or None, which specifies additional parameters to in-
clude in the validation body. Primarily for internal use

Examples

Revoke a token and confirm that it is no longer active:

>>> from globus_sdk import ConfidentialAppAuthClient
>>> ac = ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)
>>> ac.oauth2_revoke_token('<token_string>')
>>> data = ac.oauth2_validate_token('<token_string>')
>>> assert not data['active']

During application boot, check if the user needs to do a login, even if a token is present:

>>> from globus_sdk import ConfidentialAppAuthClient
>>> ac = ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)
>>> # this is not an SDK function, but a hypothetical function which
>>> # you use to load a token out of configuration data
>>> tok = load_token_from_config(...)
>>>
>>> if not tok or not ac.oauth2_validate_token(tok)['active']:
>>> # do_new_login() is another hypothetical helper
>>> tok = do_new_login()
>>> # at this point, tok is expected to be a valid token

oauth2_revoke_token(token, additional_params=None)
Revoke a token. It can be an Access Token or a Refresh token.

30 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

This call should be used to revoke tokens issued to your client, rendering them inert and not further usable.
Typically, this is incorporated into “logout” functionality, but it should also be used if the client detects
that its tokens are in an unsafe location (e.x. found in a world-readable logfile).

You can check the “active” status of the token after revocation if you want to confirm that it was revoked.

Parameters

token (string) The token which should be revoked

additional_params (dict) A dict or None, which specifies additional parameters to in-
clude in the revocation body, which can help speed the revocation process. Primarily for
internal use

Examples

>>> from globus_sdk import ConfidentialAppAuthClient
>>> ac = ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)
>>> ac.oauth2_revoke_token('<token_string>')

oauth2_token(form_data, response_class=<class ‘globus_sdk.auth.token_response.OAuthTokenResponse’>)
This is the generic form of calling the OAuth2 Token endpoint. It takes form_data, a dict which will be
encoded in a form POST body on the request.

Generally, users of the SDK should not call this method unless they are implementing OAuth2 flows.

Parameters

response_class Defaults to OAuthTokenResponse. This is used by calls to
the oauth2_token endpoint which need to specialize their responses. For example,
oauth2_get_dependent_tokens requires a specialize response class to handle the
dramatically different nature of the Dependent Token Grant response

Return type response_class

oauth2_userinfo()
Call the Userinfo endpoint of Globus Auth. Userinfo is specified as part of the OpenID Connect (OIDC)
standard, and Globus Auth’s Userinfo is OIDC-compliant.

The exact data returned will depend upon the set of OIDC-related scopes which were used to acquire the
token being used for this call. For details, see the External Documentation below.

Examples

>>> ac = AuthClient(...)
>>> info = ac.oauth2_userinfo()
>>> print('Effective Identity "{}" has Full Name "{}" and Email "{}"'
>>> .format(info["sub"], info["name"], info["email"]))

External Documentation

See Userinfo in the API documentation for details.

class globus_sdk.NativeAppAuthClient(client_id, **kwargs)
Bases: globus_sdk.auth.client_types.base.AuthClient

This type of AuthClient is used to represent a Native App’s communications with Globus Auth. It requires
a Client ID, and cannot take an authorizer.

Native Apps are applications, like the Globus CLI, which are run client-side and therefore cannot keep secrets.
Unable to possess client credentials, several Globus Auth interactions have to be specialized to accommodate
the absence of a secret.

1.3. Service Clients 31

https://docs.globus.org/api/auth/reference/#get_or_post_v2_oauth2_userinfo_resource

globus-sdk-python Documentation, Release 1.7.1

Any keyword arguments given are passed through to the AuthClient constructor.

Methods

•NativeAppAuthClient.oauth2_start_flow()

•NativeAppAuthClient.oauth2_refresh_token()

oauth2_start_flow(requested_scopes=None, redirect_uri=None, state=’_default’, verifier=None,
refresh_tokens=False, prefill_named_grant=None)

Starts a Native App OAuth2 flow.

This is done internally by instantiating a GlobusNativeAppFlowManager

While the flow is in progress, the NativeAppAuthClient becomes non thread-safe as temporary state
is stored during the flow.

Parameters

requested_scopes (iterable or string) The scopes on the token(s) being requested, as a
space-separated string or iterable of strings. Defaults to openid profile email
urn:globus:auth:scope:transfer.api.globus.org:all

redirect_uri (string) The page that users should be directed to after authenticating at the
authorize URL. Defaults to ‘https://auth.globus.org/v2/web/auth-code‘, which displays the
resulting auth_code for users to copy-paste back into your application (and thereby be
passed back to the GlobusNativeAppFlowManager)

state (string) Typically is not meaningful in the Native App Grant flow, but you may have
a specialized use case for it. The redirect_uri page will have this included in a query
parameter, so you can use it to pass information to that page. It defaults to the string ‘_default’

verifier (string) A secret used for the Native App flow. It will by default be a freshly gener-
ated random string, known only to this GlobusNativeAppFlowManager instance

refresh_tokens (bool) When True, request refresh tokens in addition to access tokens

prefill_named_grant (string) Optionally prefill the named grant label on the consent
page

Examples

You can see an example of this flow in the usage examples

External Documentation

The Globus Auth specification for Native App grants details the modifications to the Authorization Code
grant flow as The PKCE Security Protocol

oauth2_refresh_token(refresh_token)
NativeAppAuthClient specializes the refresh token grant to include its client ID as a parameter in
the POST body. It needs this specialization because it cannot authenticate the refresh grant call with client
credentials, as is normal.

class globus_sdk.ConfidentialAppAuthClient(client_id, client_secret, **kwargs)
Bases: globus_sdk.auth.client_types.base.AuthClient

This is a specialized type of AuthClient used to represent an App with a Client ID and Client Secret wishing
to communicate with Globus Auth. It must be given a Client ID and a Client Secret, and furthermore, these will
be used to establish a BasicAuthorizer <globus_sdk.authorizers.BasicAuthorizer for au-
thorization purposes. Additionally, the Client ID is stored for use in various calls.

Confidential Applications (i.e. Applications with are not Native Apps) are those like the Sample Data Portal,
which have their own credentials for authenticating against Globus Auth.

32 Chapter 1. Table of Contents

https://auth.globus.org/v2/web/auth-code
https://docs.globus.org/api/auth/developer-guide/#pkce
https://github.com/globus/globus-sample-data-portal

globus-sdk-python Documentation, Release 1.7.1

Any keyword arguments given are passed through to the AuthClient constructor.

Methods

•oauth2_client_credentials_tokens()

•ConfidentialAppAuthClient.oauth2_start_flow()

•oauth2_get_dependent_tokens()

•oauth2_token_introspect()

oauth2_client_credentials_tokens(requested_scopes=None)
Perform an OAuth2 Client Credentials Grant to get access tokens which directly represent your client
and allow it to act on its own (independent of any user authorization). This method does not use a
GlobusOAuthFlowManager because it is not at all necessary to do so.

requested_scopes A string of space-separated scope names being requested for the access token(s).
Defaults to a set of commonly desired scopes for Globus.

Return type OAuthTokenResponse

For example, with a Client ID of “CID1001” and a Client Secret of “RAND2002”, you could use this grant
type like so:

>>> client = ConfidentialAppAuthClient("CID1001", "RAND2002")
>>> tokens = client.oauth2_client_credentials_tokens()
>>> transfer_token_info = (
... tokens.by_resource_server["transfer.api.globus.org"])
>>> transfer_token = transfer_token_info["access_token"]

oauth2_start_flow(redirect_uri, requested_scopes=None, state=’_default’, re-
fresh_tokens=False)

Starts or resumes an Authorization Code OAuth2 flow.

Under the hood, this is done by instantiating a GlobusAuthorizationCodeFlowManager

Parameters

redirect_uri (string) The page that users should be directed to after authenticating at the
authorize URL. Required.

requested_scopes (iterable or string) The scopes on the token(s) being requested, as a
space-separated string or an iterable of strings. Defaults to openid profile email
urn:globus:auth:scope:transfer.api.globus.org:all

state (string) This is a way of your application passing information back to itself in the course
of the OAuth flow. Because the user will navigate away from your application to com-
plete the flow, this parameter lets you pass an arbitrary string from the starting page to the
redirect_uri

refresh_tokens (bool) When True, request refresh tokens in addition to access tokens

Examples

You can see an example of this flow in the usage examples

External Documentation

The Authorization Code Grant flow is described in the Globus Auth Specification

oauth2_get_dependent_tokens(token, additional_params=None)
Does a Dependent Token Grant against Globus Auth. This exchanges a token given to this client for a new

1.3. Service Clients 33

https://docs.globus.org/api/auth/developer-guide/#obtaining-authorization
https://docs.globus.org/api/auth/reference/#dependent_token_grant_post_v2_oauth2_token

globus-sdk-python Documentation, Release 1.7.1

set of tokens which give it access to resource servers on which it depends. This grant type is intended for
use by Resource Servers playing out the following scenario:

1.User has tokens for Service A, but Service A requires access to Service B on behalf of the user

2.Service B should not see tokens scoped for Service A

3.Service A therefore requests tokens scoped only for Service B, based on tokens which were originally
scoped for Service A...

In order to do this exchange, the tokens for Service A must have scopes which depend on scopes for
Service B (the services’ scopes must encode their relationship). As long as that is the case, Service A can
use this Grant to get those “Dependent” or “Downstream” tokens for Service B.

Parameters

token (string) An Access Token as a raw string, being exchanged.

additional_params (dict) A dict or None, which specifies additional parameters to in-
clude in the request body

Return type OAuthTokenResponse

oauth2_token_introspect(token, include=None)
POST /v2/oauth2/token/introspect

Get information about a Globus Auth token.

>>> ac = globus_sdk.ConfidentialAppAuthClient(
... CLIENT_ID, CLIENT_SECRET)
>>> ac.oauth2_token_introspect('<token_string>')

Get information about a Globus Auth token including the full identity set of the user to whom it belongs

>>> ac = globus_sdk.ConfidentialAppAuthClient(
... CLIENT_ID, CLIENT_SECRET)
>>> data = ac.oauth2_token_introspect(
... '<token_string>', include='identity_set')
>>> for identity in data['identity_set']:
>>> print('token authenticates for "{}"'.format(identity))

Parameters

token (string) An Access Token as a raw string, being evaluated

include (string) A value for the include parameter in the request body. Default is to omit
the parameter, also supports "identity_set".

External Documentation

See Token Introspection in the API documentation for details.

1.3.3 Search Client (BETA)

The SearchClient interface is in Beta, but the Search API is a fully supported, production service. Its docs are visible
here: https://docs.globus.org/api/search/

class globus_sdk.SearchClient(authorizer=None, **kwargs)
Bases: globus_sdk.base.BaseClient

Client for the Globus Search API

34 Chapter 1. Table of Contents

https://docs.globus.org/api/auth/reference/#token_introspection_post_v2_oauth2_token_introspect
https://docs.globus.org/api/search/

globus-sdk-python Documentation, Release 1.7.1

This class provides helper methods for most common resources in the API, and basic get, put, post, and
delete methods from the base client that can be used to access any API resource.

Parameters authorizer (GlobusAuthorizer) – An authorizer instance used for all calls
to Globus Search

Methods

•get_index()

•search()

•post_search()

•ingest()

•delete_by_query()

•get_subject()

•delete_subject()

•get_entry()

•create_entry()

•update_entry()

•delete_entry()

•get_query_template()

•get_query_template_list()

•get_task()

•get_task_list()

get_index(index_id, **params)
GET /v1/index/<index_id>

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> index = sc.get_index(index_id)
>>> assert index['index_id'] == index_id
>>> print(index["display_name"],
>>> "(" + index_id + "):",
>>> index["description"])

External Documentation

See Get Index Metadata in the API documentation for details.

search(index_id, q, offset=0, limit=10, query_template=None, advanced=False, **params)
GET /v1/index/<index_id>/search

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> result = sc.search(index_id, 'query string')
>>> advanced_result = sc.search(index_id, 'author: "Ada Lovelace"',
>>> advanced=True)

External Documentation

See GET Search Query in the API documentation for details.

1.3. Service Clients 35

https://docs.globus.org/api/search/index_meta/
https://docs.globus.org/api/search/search/#simple_get_query

globus-sdk-python Documentation, Release 1.7.1

post_search(index_id, data)
POST /v1/index/<index_id>/search

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> query_data = {
>>> "@datatype": "GSearchRequest",
>>> "q": "user query",
>>> "filters": [
>>> {
>>> "type": "range",
>>> "field_name": "path.to.date",
>>> "values": [
>>> {"from": "*",
>>> "to": "2014-11-07"}
>>>]
>>> }
>>>],
>>> "facets": [
>>> {"name": "Publication Date",
>>> "field_name": "path.to.date",
>>> "type": "date_histogram",
>>> "date_interval": "year"}
>>>],
>>> "sort": [
>>> {"field_name": "path.to.date",
>>> "order": "asc"}
>>>]
>>> }
>>> search_result = sc.post_search(index_id, query_data)

External Documentation

See POST Search Query in the API documentation for details.

ingest(index_id, data)
POST /v1/index/<index_id>/ingest

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> ingest_data = {
>>> "ingest_type": "GMetaEntry",
>>> "ingest_data": {
>>> "subject": "https://example.com/foo/bar",
>>> "visible_to": ["public"],
>>> "content": {
>>> "foo/bar": "some val"
>>> }
>>> }
>>> }
>>> sc.ingest(index_id, ingest_data)

or with multiple entries at once via a GMetaList:

>>> sc = globus_sdk.SearchClient(...)
>>> ingest_data = {
>>> "ingest_type": "GMetaList",
>>> "ingest_data": {
>>> "gmeta": [

36 Chapter 1. Table of Contents

https://docs.globus.org/api/search/search/#complex_post_query

globus-sdk-python Documentation, Release 1.7.1

>>> {
>>> "subject": "https://example.com/foo/bar",
>>> "visible_to": ["public"],
>>> "content": {
>>> "foo/bar": "some val"
>>> }
>>> },
>>> {
>>> "subject": "https://example.com/foo/bar",
>>> "id": "otherentry",
>>> "visible_to": ["public"],
>>> "content": {
>>> "foo/bar": "some otherval"
>>> }
>>> }
>>>]
>>> }
>>> }
>>> sc.ingest(index_id, ingest_data)

External Documentation

See Ingest in the API documentation for details.

delete_by_query(index_id, data)
POST /v1/index/<index_id>/delete_by_query

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> query_data = {
>>> "q": "user query",
>>> "filters": [
>>> {
>>> "type": "range",
>>> "field_name": "path.to.date",
>>> "values": [
>>> {"from": "*",
>>> "to": "2014-11-07"}
>>>]
>>> }
>>>]
>>> }
>>> sc.delete_by_query(index_id, query_data)

External Documentation

See Delete By Query in the API documentation for details.

get_subject(index_id, subject, **params)
GET /v1/index/<index_id>/subject

Examples

Fetch the data for subject http://example.com/abc from index index_id:

>>> sc = globus_sdk.SearchClient(...)
>>> subject_data = sc.get_subject(index_id, 'http://example.com/abc')

External Documentation

See Get Subject in the API documentation for details.

1.3. Service Clients 37

https://docs.globus.org/api/search/ingest/
https://docs.globus.org/api/search/subject_ops/#delete_by_query
https://docs.globus.org/api/search/subject_ops/#get_by_subject

globus-sdk-python Documentation, Release 1.7.1

delete_subject(index_id, subject, **params)
DELETE /v1/index/<index_id>/subject

Examples

Delete all data for subject http://example.com/abc from index index_id, even data which is
not visible to the current user:

>>> sc = globus_sdk.SearchClient(...)
>>> subject_data = sc.get_subject(index_id, 'http://example.com/abc')

External Documentation

See Delete Subject in the API documentation for details.

get_entry(index_id, subject, entry_id=None, **params)
GET /v1/index/<index_id>/entry

Examples

Lookup the entry with a subject of https://example.com/foo/bar and a null entry_id:

>>> sc = globus_sdk.SearchClient(...)
>>> entry_data = sc.get_entry(index_id, 'http://example.com/foo/bar')

Lookup the entry with a subject of https://example.com/foo/bar and an entry_id of foo/bar:

>>> sc = globus_sdk.SearchClient(...)
>>> entry_data = sc.get_entry(index_id, 'http://example.com/foo/bar',
>>> entry_id='foo/bar')

External Documentation

See Get Entry in the API documentation for details.

create_entry(index_id, data)
POST /v1/index/<index_id>/entry

Examples

Create an entry with a subject of https://example.com/foo/bar and a null entry_id:

>>> sc = globus_sdk.SearchClient(...)
>>> sc.create_entry(index_id, {
>>> "subject": "https://example.com/foo/bar",
>>> "visible_to": ["public"],
>>> "content": {
>>> "foo/bar": "some val"
>>> }
>>> })

Create an entry with a subject of https://example.com/foo/bar and an entry_id of foo/bar:

>>> sc = globus_sdk.SearchClient(...)
>>> sc.create_entry(index_id, {
>>> "subject": "https://example.com/foo/bar",
>>> "visible_to": ["public"],
>>> "id": "foo/bar",
>>> "content": {
>>> "foo/bar": "some val"
>>> }
>>> })

38 Chapter 1. Table of Contents

https://docs.globus.org/api/search/subject_ops/#delete_by_subject
https://docs.globus.org/api/search/entry_ops/#get_single_entry

globus-sdk-python Documentation, Release 1.7.1

External Documentation

See Create Entry in the API documentation for details.

update_entry(index_id, data)
PUT /v1/index/<index_id>/entry

Examples

Update an entry with a subject of https://example.com/foo/bar and a null entry_id:

>>> sc = globus_sdk.SearchClient(...)
>>> sc.update_entry(index_id, {
>>> "subject": "https://example.com/foo/bar",
>>> "visible_to": ["public"],
>>> "content": {
>>> "foo/bar": "some val"
>>> }
>>> })

External Documentation

See Update Entry in the API documentation for details.

delete_entry(index_id, subject, entry_id=None, **params)
DELETE /v1/index/<index_id>/entry

Examples

Delete an entry with a subject of https://example.com/foo/bar and a null entry_id:

>>> sc = globus_sdk.SearchClient(...)
>>> sc.delete_entry(index_id, "https://example.com/foo/bar")

Delete an entry with a subject of https://example.com/foo/bar and an entry_id of “foo/bar”:

>>> sc = globus_sdk.SearchClient(...)
>>> sc.delete_entry(index_id, "https://example.com/foo/bar",
>>> entry_id="foo/bar")

External Documentation

See Delete Entry in the API documentation for details.

get_query_template(index_id, template_name)
GET /v1/index/<index_id>/query_template/<template_name>

External Documentation

See Get Query Template in the API documentation for details.

get_query_template_list(index_id)
GET /v1/index/<index_id>/query_template

External Documentation

See Get Query Template List in the API documentation for details.

get_task(task_id, **params)
GET /v1/task/<task_id>

Examples

1.3. Service Clients 39

https://docs.globus.org/api/search/entry_ops/#create_single_entry
https://docs.globus.org/api/search/entry_ops/#update_single_entry
https://docs.globus.org/api/search/entry_ops/#delete_single_entry
https://docs.globus.org/api/search/query_templates/#get_query_template
https://docs.globus.org/api/search/query_templates/#get_query_template_list

globus-sdk-python Documentation, Release 1.7.1

>>> sc = globus_sdk.SearchClient(...)
>>> task = sc.get_task(task_id)
>>> assert task['index_id'] == known_index_id
>>> print(task["task_id"] + " | " + task['state'])

get_task_list(index_id, **params)
GET /v1/task_list/<index_id>

Examples

>>> sc = globus_sdk.SearchClient(...)
>>> task_list = sc.get_task_list(index_id)
>>> for task in task_list['tasks']:
>>> print(task["task_id"] + " | " + task['state'])

Helper Objects

class globus_sdk.SearchQuery
Bases: dict

A specialized dict which has helpers for creating and modifying a Search Query document.

Example usage:

>>> from globus_sdk import SearchClient, SearchQuery
>>> sc = SearchClient(...)
>>> index_id = ...
>>> query = (SearchQuery(q='example query')
>>> .set_limit(100).set_offset(10)
>>> .add_filter('path.to.field1', ['foo', 'bar']))
>>> result = sc.post_search(index_id, query)

Specialized Errors

class globus_sdk.exc.SearchAPIError(r)
Bases: globus_sdk.exc.GlobusAPIError

Error class for the Search API client. In addition to the inherited code and message instance variables,
provides:

Variables error_data – Additional object returned in the error response. May be a dict, list, or
None.

1.3.4 Low Level API

All service clients support the low level interface, provided by the BaseClient.

class globus_sdk.base.BaseClient(service, environment=None, base_url=None, base_path=None,
authorizer=None, app_name=None, http_timeout=None, *args,
**kwargs)

Simple client with error handling for Globus REST APIs. Implemented as a wrapper around a
requests.Session object, with a simplified interface that does not directly expose anything from requests.

You should never try to directly instantiate a BaseClient.

Parameters

40 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

authorizer (GlobusAuthorizer)

A GlobusAuthorizer which will generate Authorization headers

app_name (string) Optional “nice name” for the application. Has no bearing on the se-
mantics of client actions. It is just passed as part of the User-Agent string, and may be
useful when debugging issues with the Globus Team

http_timeout (float) Number of seconds to wait on HTTP connections. Default is 60. A value
of -1 indicates that no timeout should be used (requests can hang indefinitely).

All other parameters are for internal use and should be ignored.

set_app_name(app_name)
Set an application name to send to Globus services as part of the User Agent.

Application developers are encouraged to set an app name as a courtesy to the Globus Team, and to
potentially speed resolution of issues when interacting with Globus Support.

get(path, params=None, headers=None, response_class=None, retry_401=True)
Make a GET request to the specified path.

Parameters

path (string) Path for the request, with or without leading slash

params (dict) Parameters to be encoded as a query string

headers (dict) HTTP headers to add to the request

response_class (class) Class for response object, overrides the client’s
default_response_class

retry_401 (bool) Retry on 401 responses with fresh Authorization if self.authorizer
supports it

Returns GlobusHTTPResponse object

post(path, json_body=None, params=None, headers=None, text_body=None, response_class=None,
retry_401=True)

Make a POST request to the specified path.

Parameters

path (string) Path for the request, with or without leading slash

params (dict) Parameters to be encoded as a query string

headers (dict) HTTP headers to add to the request

json_body (dict) Data which will be JSON encoded as the body of the request

text_body (string or dict) Either a raw string that will serve as the request body, or a dict
which will be HTTP Form encoded

response_class (class) Class for response object, overrides the client’s
default_response_class

retry_401 (bool) Retry on 401 responses with fresh Authorization if self.authorizer
supports it

Returns GlobusHTTPResponse object

1.3. Service Clients 41

globus-sdk-python Documentation, Release 1.7.1

delete(path, params=None, headers=None, response_class=None, retry_401=True)
Make a DELETE request to the specified path.

Parameters

path (string) Path for the request, with or without leading slash

params (dict) Parameters to be encoded as a query string

headers (dict) HTTP headers to add to the request

response_class (class) Class for response object, overrides the client’s
default_response_class

retry_401 (bool) Retry on 401 responses with fresh Authorization if self.authorizer
supports it

Returns GlobusHTTPResponse object

put(path, json_body=None, params=None, headers=None, text_body=None, response_class=None,
retry_401=True)
Make a PUT request to the specified path.

Parameters

path (string) Path for the request, with or without leading slash

params (dict) Parameters to be encoded as a query string

headers (dict) HTTP headers to add to the request

json_body (dict) Data which will be JSON encoded as the body of the request

text_body (string or dict) Either a raw string that will serve as the request body, or a dict
which will be HTTP Form encoded

response_class (class) Class for response object, overrides the client’s
default_response_class

retry_401 (bool) Retry on 401 responses with fresh Authorization if self.authorizer
supports it

Returns GlobusHTTPResponse object

1.3.5 Multi-Thread and Multi-Process Safety

Each Globus SDK client class holds a networking session object to interact with the Globus API. Using a previously
created service client object after forking or between multiple threads should be considered unsafe. In multi-processing
applications, it is recommended to create service client objects after process forking and to ensure that there is only
one service client instance created per process.

1.4 Responses

Unless noted otherwise, all method return values for Globus SDK Clients are GlobusResponse objects.

Some GlobusResponse objects are iterables. In those cases, their contents will also be GlobusResponse ob-
jects.

To customize client methods with additional detail, the SDK uses subclasses of GlobusResponse. For example the
GlobusHTTPResponse attaches HTTP response information.

42 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

1.4.1 Generic Response Classes

class globus_sdk.response.GlobusResponse(data, client=None)
Generic response object, with a single data member.

The most common response data is a JSON dictionary. To make handling this type of response as seemless as
possible, the GlobusResponse object also supports direct dictionary item access, as an alias for accessing an
item of the underlying data. If data is not a dictionary, item access will raise TypeError.

>>> print("Response ID": r["id"]) # alias for r.data["id"]

GlobusResponse objects always wrap some kind of data to return to a caller. Most basic actions on a
GlobusResponse are just ways of interacting with this data.

data
Response data as a Python data structure. Usually a dict or list.

get(*args, **kwargs)
GlobusResponse.get is just an alias for GlobusResponse.data.get

class globus_sdk.response.GlobusHTTPResponse(http_response, client=None)
Bases: globus_sdk.response.GlobusResponse

Response object that wraps an HTTP response from the underlying HTTP library. If the response is JSON, the
parsed data will be available in data, otherwise data will be None and text should be used instead.

Variables

• http_status – HTTP status code returned by the server (int)

• content_type – Content-Type header returned by the server (str)

text
The raw response data as a string.

1.4.2 Service-Specific Response Classes

Transfer Responses

class globus_sdk.transfer.response.TransferResponse(http_response, client=None)
Bases: globus_sdk.response.GlobusHTTPResponse

Base class for TransferClient responses.

class globus_sdk.transfer.response.IterableTransferResponse(http_response,
client=None)

Bases: globus_sdk.transfer.response.base.TransferResponse

Response class for non-paged list oriented resources. Allows top level fields to be accessed normally via stan-
dard item access, and also provides a convenient way to iterate over the sub-item list in the DATA key:

>>> print("Path:", r["path"])
>>> # Equivalent to: for item in r["DATA"]
>>> for item in r:
>>> print(item["name"], item["type"])

class globus_sdk.transfer.response.ActivationRequirementsResponse(*args,
**kwargs)

Bases: globus_sdk.transfer.response.base.TransferResponse

Response class for Activation Requirements responses.

1.4. Responses 43

globus-sdk-python Documentation, Release 1.7.1

All Activation Requirements documents refer to a specific Endpoint, from whence they were acquired. Refer-
ences to “the Endpoint” implicitly refer to that originating Endpoint, and not to some other Endpoint.

External Documentation

See Activation Requirements Document in the API documentation for details.

active_until(time_seconds, relative_time=True)
Check if the Endpoint will be active until some time in the future, given as an integer number of seconds.
When relative_time=False, the time_seconds is interpreted as a POSIX timestamp.

This supports queries using both relative and absolute timestamps to better support a wide range of use
cases. For example, if I have a task that I know will typically take N seconds, and I want an M second
safety margin:

>>> num_secs_allowed = N + M
>>> tc = TransferClient(...)
>>> reqs_doc = tc.endpoint_get_activation_requirements(...)
>>> if not reqs_doc.active_until(num_secs_allowed):
>>> raise Exception("Endpoint won't be active long enough")
>>> ...

or, alternatively, if I know that the endpoint must be active until October 18th, 2016 for my tasks to
complete:

>>> oct18_2016 = 1476803436
>>> tc = TransferClient(...)
>>> reqs_doc = tc.endpoint_get_activation_requirements(...)
>>> if not reqs_doc.active_until(oct18_2016, relative_time=False):
>>> raise Exception("Endpoint won't be active long enough")
>>> ...

Parameters

time_seconds Integer number of seconds into the future.

relative_time Defaults to True. When False, time_seconds is treated as a POSIX
timestamp (i.e. seconds since epoch as an integer) instead of its ordinary behavior.

Return type bool

always_activated
Returns True if the endpoint activation never expires (e.g. shared endpoints, globus connect personal
endpoints).

Return type bool

supports_auto_activation
Check if the document lists Auto-Activation as an available type of activation. Typically good to use when
you need to catch endpoints that require web activation before proceeding.

>>> endpoint_id = "..."
>>> tc = TransferClient(...)
>>> reqs_doc = tc.endpoint_get_activation_requirements(endpoint_id)
>>> if not reqs_doc.supports_auto_activation:
>>> # use `from __future__ import print_function` in py2
>>> print(("This endpoint requires web activation. "
>>> "Please login and activate the endpoint here:\n"
>>> "https://www.globus.org/app/endpoints/{}/activate")
>>> .format(endpoint_id), file=sys.stderr)

44 Chapter 1. Table of Contents

https://docs.globus.org/api/transfer/endpoint_activation/#activation_requirements_document

globus-sdk-python Documentation, Release 1.7.1

>>> # py3 calls it `input()` in py2, use `raw_input()`
>>> input("Please Hit Enter When You Are Done")

Return type bool

supports_web_activation
Check if the document lists known types of activation that can be done through the web.
If this returns False, it means that the endpoint is of a highly unusual type, and you
should directly inspect the response’s data attribute to see what is required. Send-
ing users to the web page for activation is also a fairly safe action to take. Note
that ActivationRequirementsResponse.supports_auto_activation directly implies
ActivationRequirementsResponse.supports_web_activation, so these are not exclu-
sive.

For example,

>>> tc = TransferClient(...)
>>> reqs_doc = tc.endpoint_get_activation_requirements(...)
>>> if not reqs_doc.supports_web_activation:
>>> # use `from __future__ import print_function` in py2
>>> print("Highly unusual endpoint. " +
>>> "Cannot webactivate. Raw doc: " +
>>> str(reqs_doc), file=sys.stderr)
>>> print("Sending user to web anyway, just in case.",
>>> file=sys.stderr)
>>> ...

Return type bool

PaginatedResource Responses

The PaginatedResource class should not typically be instantiated directly, but is returned from several
TransferClient methods. It is an iterable of GlobusRepsonse objects.

class globus_sdk.transfer.paging.PaginatedResource(client_method, path,
client_kwargs, num_results=None,
max_results_per_call=1000,
max_total_results=None, offset=0,
paging_style=0)

Bases: globus_sdk.response.GlobusResponse, six.Iterator

A PaginatedResource is an iterable response which implements the Python iterator interface. As such,
you can only iterate over PaginatedResources once. Future iterations will be empty.

If you need fresh results, make a call for a new PaginatedResource, and if you want to cache and reuse
results, convert to a list or other structure. You may also want to read the docs on the data property.

Because paginated data can be large, you will tend to get the best performance by being sure to only iterate over
the results once.

data
To get the “data” on a PaginatedResource, fetch all pages and convert them into the only python data
structure that makes sense: a list.

Note that this forces iteration/evaluation of all pages from the API. It therefore may cause singificant
IO spikes when used. You should avoid using the PaginatedResource.data property whenever
possible.

1.4. Responses 45

globus-sdk-python Documentation, Release 1.7.1

Auth Responses

class globus_sdk.auth.token_response.OAuthTokenResponse(*args, **kwargs)
Bases: globus_sdk.response.GlobusHTTPResponse

Class for responses from the OAuth2 code for tokens exchange used in 3-legged OAuth flows.

by_resource_server
Representation of the token response in a dict indexed by resource server.

Although OAuthTokenResponse.data is still available and valid, this representation is typically
more desirable for applications doing inspection of access tokens and refresh tokens.

by_scopes
Representation of the token response in a dict-like object indexed by scope name (or even space delimited
scope names, so long as they match the same token).

If you request scopes scope1 scope2 scope3, where scope1 and scope2 are for the same service (and
therefore map to the same token), but scope3 is for a different service, the following forms of access are
valid:

>>> tokens = ...
>>> # single scope
>>> token_data = tokens.by_scopes['scope1']
>>> token_data = tokens.by_scopes['scope2']
>>> token_data = tokens.by_scopes['scope3']
>>> # matching scopes
>>> token_data = tokens.by_scopes['scope1 scope2']
>>> token_data = tokens.by_scopes['scope2 scope1']

decode_id_token(auth_client=None)
A parsed ID Token (OIDC) as a dict.

Parameters

auth_client (AuthClient) Deprecated parameter for providing the AuthClient used to
request this token back to the OAuthTokenResponse. The SDK now tracks this internally, so
it is no longer necessary.

class globus_sdk.auth.token_response.OAuthDependentTokenResponse(*args,
**kwargs)

Bases: globus_sdk.auth.token_response.OAuthTokenResponse

Class for responses from the OAuth2 code for tokens retrieved by the OAuth2 Dependent Token Extension
Grant. For more complete docs, see oauth2_get_dependent_tokens

1.5 Exceptions

All Globus SDK errors inherit from GlobusError, and all SDK error classes are importable from globus_sdk.

You can therefore capture all errors thrown by the SDK by looking for GlobusError, as in:

import logging
from globus_sdk import TransferClient, GlobusError

try:
tc = TransferClient(...)
search with no parameters will throw an exception
eps = tc.endpoint_search()

46 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

except GlobusError:
logging.exception("Globus Error!")
raise

In most cases, it’s best to look for specific subclasses of GlobusError. For example, to write code which is
distinguishes between network failures and unexpected API conditions, you’ll want to look for NetworkError and
GlobusAPIError:

import logging
from globus_sdk import (TransferClient,

GlobusError, GlobusAPIError, NetworkError)

try:
tc = TransferClient(...)

eps = tc.endpoint_search(filter_fulltext="myendpointsearch")

for ep in eps:
print(ep["display_name"])

...
except GlobusAPIError as e:

Error response from the REST service, check the code and message for
details.
logging.error(("Got a Globus API Error\n"

"Error Code: {}\n"
"Error Message: {}").format(e.code, e.message))

raise e
except NetworkError:

logging.error(("Network Failure. "
"Possibly a firewall or connectivity issue"))

raise
except GlobusError:

logging.exception("Totally unexpected GlobusError!")
raise

else:
...

Of course, if you want to learn more information about the response, you should inspect it more than this.

All errors raised by the SDK should be instances of GlobusError. Malformed calls to Globus SDK methods
typically raise GlobusSDKUsageError, but, in rare cases, may raise standard python exceptions (ValueError,
OSError, etc.)

1.5.1 Error Classes

class globus_sdk.GlobusError
Bases: exceptions.Exception

Root of the Globus Exception hierarchy. Stub class.

class globus_sdk.GlobusSDKUsageError
Bases: globus_sdk.exc.GlobusError, exceptions.ValueError

A GlobusSDKUsageErrormay be thrown in cases in which the SDK detects that it is being used improperly.

These errors typically indicate that some contract regarding SDK usage (e.g. required order of operations) has
been violated.

1.5. Exceptions 47

globus-sdk-python Documentation, Release 1.7.1

class globus_sdk.GlobusAPIError(r, *args, **kw)
Bases: globus_sdk.exc.GlobusError

Wraps errors returned by a REST API.

Variables

• http_status – HTTP status code (int)

• code – Error code from the API (str), or “Error” for unclassified errors

• message – Error message from the API. In general, this will be more useful to developers,
but there may be cases where it’s suitable for display to end users.

raw_json
Get the verbatim error message received from a Globus API, interpreted as a JSON string and evaluated as
a dict

If the body cannot be loaded as JSON, this is None

raw_text
Get the verbatim error message receved from a Globus API as a string

class globus_sdk.NetworkError(msg, exc, *args, **kw)
Bases: globus_sdk.exc.GlobusError

Error communicating with the REST API server.

Holds onto original exception data, but also takes a message to explain potentially confusing or inconsistent
exceptions passed to us

class globus_sdk.GlobusConnectionError(msg, exc, *args, **kw)
Bases: globus_sdk.exc.NetworkError

A connection error occured while making a REST request.

class globus_sdk.GlobusTimeoutError(msg, exc, *args, **kw)
Bases: globus_sdk.exc.NetworkError

The REST request timed out.

class globus_sdk.GlobusConnectionTimeoutError(msg, exc, *args, **kw)
Bases: globus_sdk.exc.GlobusTimeoutError

The request timed out during connection establishment. These errors are safe to retry.

1.6 Local Endpoints

Unlike SDK functionality for accessing Globus APIs, the locally available Globus Endpoints require special treatment.
These accesses are not authenticated via Globus Auth, and may rely upon the state of the local filesystem, running
processes, and the permissions of local users.

1.6.1 Globus Connect Server

There are no SDK methods for accessing an installation of Globus Connect Server.

48 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

1.6.2 Globus Connect Personal

Globus Connect Personal endpoints belonging to the current user may be accessed via instances of the following class:

class globus_sdk.LocalGlobusConnectPersonal
A LocalGlobusConnectPersonal object represents the available SDK methods for inspecting and controlling a
running Globus Connect Personal installation.

These objects do not inherit from BaseClient and do not provide methods for interacting with any Globus Service
APIs.

endpoint_id

Type string

The endpoint ID of the local Globus Connect Personal endpoint installation.

This value is loaded whenever it is first accessed, but saved after that.

Usage:

>>> from globus_sdk import TransferClient, LocalGlobusConnectPersonal
>>> local_ep = LocalGlobusConnectPersonal()
>>> ep_id = local_ep.endpoint_id
>>> tc = TransferClient(...) # needs auth details
>>> for f in tc.operation_ls(ep_id):
>>> print("Local file: ", f["name"])

You can also reset the value, causing it to load again on next access, with del
local_ep.endpoint_id

1.7 Globus Auth / OAuth2

Globus offers Authentication and Authorization services through an OAuth2 service, Globus Auth.

Globus Auth acts as an Authorization Server, and allows users to authenticate with, and link together, identities from
a wide range of Identity Providers.

Although the AuthClient class documentation covers normal interactions with Globus Auth, the OAuth2 flows are
significantly more complex.

This section documents the supported types of authentication and how to carry them out, as well as providing some
necessary background on various OAuth2 elements.

Credentials are for Users and also for Applications

It is very important that our goal in OAuth2 is not to get credentials for an application on its own, but rather for the
application as a client to Globus which is acting on behalf of a user.

Therefore, if you are writing an application called foo, and a user bar@example.com is using foo, the credentials
produced belong to the combination of foo and bar@example.com. The resulting credentials represent the rights and
permission for foo to perform actions for bar@example.com on systems authenticated via Globus.

1.7. Globus Auth / OAuth2 49

globus-sdk-python Documentation, Release 1.7.1

OAuth2 Documentation

1.7.1 OAuth Flows

If you want to get started doing OAuth2 flows, you should read the tutorial and look at the examples.

Flow Managers

These objects represent in-progress OAuth2 authentication flows. Most typically, you should not use these objects,
but rather rely on the globus_sdk.AuthClient object to manage one of these for you through its oauth2_*
methods.

All Flow Managers inherit from the GlobusOAuthFlowManager abstract class. They are a combination of a
store for OAuth2 parameters specific to the authentication method you are using and methods which act upon those
parameters.

class globus_sdk.auth.GlobusNativeAppFlowManager(auth_client, requested_scopes=None,
redirect_uri=None, state=’_default’,
verifier=None, refresh_tokens=False,
prefill_named_grant=None)

Bases: globus_sdk.auth.oauth2_flow_manager.GlobusOAuthFlowManager

This is the OAuth flow designated for use by clients wishing to authenticate users in the absence of a Client
Secret. Because these applications run “natively” in the user’s environment, they cannot protect a secret. Instead,
a temporary secret is generated solely for this authentication attempt.

Parameters

auth_client (AuthClient) The NativeAppAuthClient object on which this flow is based.
It is used to extract default values for the flow, and also to make calls to the Auth service. This
SHOULD be a NativeAppAuthClient

requested_scopes (iterable or string) The scopes on the token(s) being requested, as a
space-separated string or iterable of strings. Defaults to openid profile email
urn:globus:auth:scope:transfer.api.globus.org:all

redirect_uri (string) The page that users should be directed to after authenticating at the autho-
rize URL. Defaults to ‘https://auth.globus.org/v2/web/auth-code‘, which displays the resulting
auth_code for users to copy-paste back into your application (and thereby be passed back to
the GlobusNativeAppFlowManager)

state (string) Typically is not meaningful in the Native App Grant flow, but you may have a spe-
cialized use case for it. The redirect_uri page will have this included in a query parameter,
so you can use it to pass information to that page. It defaults to the string ‘_default’

verifier (string) A secret used for the Native App flow. It will by default be a freshly generated
random string, known only to this GlobusNativeAppFlowManager instance

refresh_tokens (bool) When True, request refresh tokens in addition to access tokens

prefill_named_grant (string) Optionally prefill the named grant label on the consent page

exchange_code_for_tokens(auth_code)
The second step of the Native App flow, exchange an authorization code for access tokens (and refresh
tokens if specified).

Return type OAuthTokenResponse

get_authorize_url(additional_params=None)
Start a Native App flow by getting the authorization URL to which users should be sent.

50 Chapter 1. Table of Contents

https://auth.globus.org/v2/web/auth-code

globus-sdk-python Documentation, Release 1.7.1

Parameters

additional_params (dict) A dict or None, which specifies additional query parameters
to include in the authorize URL. Primarily for internal use

Return type string

The returned URL string is encoded to be suitable to display to users in a link or to copy into their browser.
Users will be redirected either to your provided redirect_uri or to the default location, with the
auth_code embedded in a query parameter.

class globus_sdk.auth.GlobusAuthorizationCodeFlowManager(auth_client, redirect_uri,
requested_scopes=None,
state=’_default’, re-
fresh_tokens=False)

Bases: globus_sdk.auth.oauth2_flow_manager.GlobusOAuthFlowManager

This is the OAuth flow designated for use by Clients wishing to authenticate users in a web application backed
by a server-side component (e.g. an API). The key constraint is that there is a server-side system that can keep a
Client Secret without exposing it to the web client. For example, a Django application can rely on the webserver
to own the secret, so long as it doesn’t embed it in any of the pages it generates.

The application sends the user to get a temporary credential (an auth_code) associated with its Client ID. It
then exchanges that temporary credential for a token, protecting the exchange with its Client Secret (to prove
that it really is the application that the user just authorized).

Parameters

auth_client (ConfidentialAppAuthClient) The AuthClient used to extract default val-
ues for the flow, and also to make calls to the Auth service. It MUST be a
ConfidentialAppAuthClient

redirect_uri (string) The page that users should be directed to after authenticating at the au-
thorize URL. Required.

requested_scopes (iterable or string) The scopes on the token(s) being requested, as a
space-separated string or an iterable of strings. Defaults to openid profile email
urn:globus:auth:scope:transfer.api.globus.org:all

state (string) This is a way of your application passing information back to itself in the course of
the OAuth flow. Because the user will navigate away from your application to complete the flow,
this parameter lets you pass an arbitrary string from the starting page to the redirect_uri

refresh_tokens (bool) When True, request refresh tokens in addition to access tokens

exchange_code_for_tokens(auth_code)
The second step of the Authorization Code flow, exchange an authorization code for access tokens (and
refresh tokens if specified)

Return type OAuthTokenResponse

get_authorize_url(additional_params=None)
Start a Authorization Code flow by getting the authorization URL to which users should be sent.

Parameters

additional_params (dict) A dict or None, which specifies additional query parameters
to include in the authorize URL. Primarily for internal use

Return type string

1.7. Globus Auth / OAuth2 51

globus-sdk-python Documentation, Release 1.7.1

The returned URL string is encoded to be suitable to display to users in a link or to copy into their browser.
Users will be redirected either to your provided redirect_uri or to the default location, with the
auth_code embedded in a query parameter.

Abstract Flow Manager

class globus_sdk.auth.oauth2_flow_manager.GlobusOAuthFlowManager
Bases: object

An abstract class definition that defines the interface for the Flow Managers for Globus Auth. Flow Managers
are really just bundles of parameters to Globus Auth’s OAuth2 mechanisms, along with some useful utility
methods. Primarily they can be used as a simple way of tracking small amounts of state in your application as it
leverages Globus Auth for authentication.

For sophisticated use cases, the provided Flow Managers will NOT be sufficient, but you should consider the
provided objects a model.

This way of managing OAuth2 flows is inspired by oauth2client. However, because oauth2client has an
uncertain future (as of 2016-08-31), and we would have to wrap it in order to provide a clean API surface
anyway, we implement our own set of Flow objects.

exchange_code_for_tokens(auth_code)
This method takes an auth_code and produces a response object containing one or more tokens. Most
typically, this is the second step of the flow, and consumes the auth_code that was sent to a redirect URI
used in the authorize step.

The exchange process may be parameterized over attributes of the specific flow manager instance which is
generating it.

Parameters

auth_code (string) The authorization code which was produced from the authorization flow

Return type OAuthTokenResponse

get_authorize_url()
This method consumes no arguments or keyword arguments, and produces a string URL for the Authorize
Step of a 3-legged OAuth2 flow. Most typically, this is the first step of the flow, and the user may be
redirected to the URL or provided with a link.

The authorize_url may be (usually is) parameterized over attributes of the specific flow manager instance
which is generating it.

Return type string

1.7.2 Resource Servers and Scopes

What are Resource Servers, and how do they interact with scopes?

If you look at a OAuthTokenResponse, you will notice that it organizes information under Resource Servers, in-
cluding one access token (and optionally one refresh token) per Resource Server. This can appear confusing, especially
as the Resource Servers in this response do not map one-to-one onto the scopes that your application requested.

This is a brief description Resource Servers to make sense of this response.

52 Chapter 1. Table of Contents

https://github.com/google/oauth2client

globus-sdk-python Documentation, Release 1.7.1

Short-Short Version

Resource Servers are just the OAuth2 name for services which use scopes on tokens to control access to their resources.

Less-Short Version

When you request tokens, you do so with a set of scopes. Our default set consists of openid profile email
urn:globus:auth:scope:transfer.api.globus.org:all. That means you can get OpenID Connect
data in general, profile data, email address, and access to Globus Transfer resources (in that order).

However, for those four scopes, there aren’t four distinct services – there are only two.
openid, profile, and email all correspond to the service at auth.globus.org (Globus
Auth) while urn:globus:auth:scope:transfer.api.globus.org:all corresponds to
transfer.api.globus.org (Globus Transfer).

As a result, we don’t get four tokens for our four scopes – we get two tokens, one for the first three scopes, and one
for the last scope. Those tokens can be organized better by their relevant Resource Server than by their scope names,
which is why we use the token_response.by_resource_server description.

Why Not Just One Token?

The reason for separate tokens at all (as opposed to one token with all four scopes) is to limit the exposure of tokens
for different services.

As a motivating example, consider a new service registered as Resource Server in Globus belonging to another or-
ganization – serv.example.com. serv.example.com should not see tokens scoped for Globus Transfer, and
Globus Transfer shouldn’t see tokens scoped for serv.example.com.

Using a single token for all Resource Servers would make isolating services in this way impossible.

1.8 API Authorization

Authorizing calls against Globus can be a complex process. In particular, if you are using Refresh Tokens and short-
lived Access Tokens, you may need to take particular care managing your Authorization state.

Within the SDK, we solve this problem by using GlobusAuthorizers, which are attached to clients. These are a
very simple class of generic objects which define a way of getting an up-to-date Authorization header, and trying
to handle a 401 (if that header is expired).

Whenever using the Service Clients, you should be passing in an authorizer when you create a new client unless
otherwise specified.

The type of authorizer you will use depends very much on your application, but if you want examples you should look
at the examples section. It may help to start with the examples and come back to the full documentation afterwards.

1.8.1 The Authorizer Interface

We define the interface for GlobusAuthorizer objects in terms of an Abstract Base Class:

class globus_sdk.authorizers.base.GlobusAuthorizer
A GlobusAuthorizer is a very simple object which generates valid Authorization headers. It may also have
handling for responses that indicate that it has provided an invalid Authorization header.

1.8. API Authorization 53

globus-sdk-python Documentation, Release 1.7.1

set_authorization_header(header_dict)
Takes a dict of headers, and adds to it a mapping of {"Authorization": "..."} per this object’s
type of Authorization. Importantly, if an Authorization header is already set, this method is expected
to overwrite it.

handle_missing_authorization(*args, **kwargs)
This operation should be called if a request is made with an Authorization header generated by this object
which returns a 401 (HTTP Unauthorized). If the GlobusAuthorizer thinks that it can take some
action to remedy this, it should update its state and return True. If the Authorizer cannot do anything in
the event of a 401, this may update state, but importantly returns False.

By default, this always returns False and takes no other action.

GlobusAuthorizer objects that fetch new access tokens when their existing ones expire or a 401 is received
implement the RenewingAuthorizer class

class globus_sdk.authorizers.renewing.RenewingAuthorizer(access_token=None,
expires_at=None,
on_refresh=None)

Bases: globus_sdk.authorizers.base.GlobusAuthorizer

A RenewingAuthorizer is an abstract superclass to any authorizer that needs to get new Access Tokens in
order to form Authorization headers.

It may be passed an initial Access Token, but if so must also be passed an expires_at value for that token.

It provides methods that handle the logic for checking and adjusting expiration time, callbacks on renewal, and
401 handling.

To make an authorizer that implements this class implement the _get_token_response and _extract_token_data
methods for that authorization type,

Parameters

access_token (string) Initial Access Token to use. Used only if expires_at is also set, oth-
erwise ignored.

expires_at (int) Expiration time for the starting access_token expressed as a POSIX times-
tamp (i.e. seconds since the epoch)

on_refresh (callable) A callback which is triggered any time this authorizer fetches a new ac-
cess_token. The on_refresh callable is invoked on the OAuthTokenResponse object
resulting from the token being refreshed. It should take only one argument, the token response
object.

This is useful for implementing storage for Access Tokens, as the on_refresh callback can
be used to update the Access Tokens and their expiration times.

set_authorization_header(header_dict)
Checks to see if a new access token is needed. Once that’s done, sets the Authorization header to
“Bearer <access_token>”

handle_missing_authorization(*args, **kwargs)
The renewing authorizer can respond to a service 401 by immediately invalidating its current Access
Token. When this happens, the next call to set_authorization_header() will result in a new
Access Token being fetched.

1.8.2 Authorizer Types

All of these types of authorizers can be imported from globus_sdk.authorizers.

54 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

class globus_sdk.NullAuthorizer
Bases: globus_sdk.authorizers.base.GlobusAuthorizer

This Authorizer implements No Authentication – as in, it ensures that there is no Authorization header.

set_authorization_header(header_dict)
Removes the Authorization header from the given header dict if one was present.

class globus_sdk.BasicAuthorizer(username, password)
Bases: globus_sdk.authorizers.base.GlobusAuthorizer

This Authorizer implements Basic Authentication. Given a “username” and “password”, they are sent base64
encoded in the header.

Parameters

username (string) Username component for Basic Auth

password (string) Password component for Basic Auth

set_authorization_header(header_dict)
Sets the Authorization header to “Basic <base64 encoded username:password>”

class globus_sdk.AccessTokenAuthorizer(access_token)
Bases: globus_sdk.authorizers.base.GlobusAuthorizer

Implements Authorization using a single Access Token with no Refresh Tokens. This is sent as a Bearer token
in the header – basically unadorned.

Parameters

access_token (string) An access token for Globus Auth

set_authorization_header(header_dict)
Sets the Authorization header to “Bearer <access_token>”

class globus_sdk.RefreshTokenAuthorizer(refresh_token, auth_client, access_token=None, ex-
pires_at=None, on_refresh=None)

Bases: globus_sdk.authorizers.renewing.RenewingAuthorizer

Implements Authorization using a Refresh Token to periodically fetch renewed Access Tokens. It may be
initialized with an Access Token, or it will fetch one the first time that set_authorization_header() is
called.

Example usage looks something like this:

>>> import globus_sdk
>>> auth_client = globus_sdk.AuthClient(client_id=..., client_secret=...)
>>> # do some flow to get a refresh token from auth_client
>>> rt_authorizer = globus_sdk.RefreshTokenAuthorizer(
>>> refresh_token, auth_client)
>>> # create a new client
>>> transfer_client = globus_sdk.TransferClient(authorizer=rt_authorizer)

anything that inherits from BaseClient, so at least TransferClient and AuthClient will automati-
cally handle usage of the RefreshTokenAuthorizer.

Parameters

refresh_token (string) Refresh Token for Globus Auth

auth_client (AuthClient) AuthClient capable of using the refresh_token

access_token (string) Initial Access Token to use, only used if expires_at is also set

1.8. API Authorization 55

globus-sdk-python Documentation, Release 1.7.1

expires_at (int) Expiration time for the starting access_token expressed as a POSIX times-
tamp (i.e. seconds since the epoch)

on_refresh (callable) A callback which is triggered any time this authorizer fetches a new ac-
cess_token. The on_refresh callable is invoked on the OAuthTokenResponse object
resulting from the token being refreshed. It should take only one argument, the token response
object.

This is useful for implementing storage for Access Tokens, as the on_refresh callback can
be used to update the Access Tokens and their expiration times.

class globus_sdk.ClientCredentialsAuthorizer(confidential_client, scopes, ac-
cess_token=None, expires_at=None,
on_refresh=None)

Bases: globus_sdk.authorizers.renewing.RenewingAuthorizer

Implementation of a RenewingAuthorizer that renews confidential app client Access Tokens using a Confiden-
tialAppAuthClient and a set of scopes to fetch a new Access Token when the old one expires.

Example usage looks something like this:

>>> import globus_sdk
>>> confidential_client = globus_sdk.ConfidentialAppAuthClient(

client_id=..., client_secret=...)
>>> scopes = "..."
>>> cc_authorizer = globus_sdk.ClientCredentialsAuthorizer(
>>> confidential_client, scopes)
>>> # create a new client
>>> transfer_client = globus_sdk.TransferClient(authorizer=cc_authorizer)

any client that inherits from BaseClient should be able to use a ClientCredentialsAuthorizer to act as the
client itself.

Parameters

confidential_client (ConfidentialAppAuthClient)
ConfidentialAppAuthClient with a valid id and client secret

scopes (string) A string of space-separated scope names being requested for the access tokens that
will be used for the Authorization header. These scopes must all be for the same resource server,
or else the token response will have multiple access tokens.

access_token (string) Initial Access Token to use, only used if expires_at is also set. Must
be requested with the same set of scopes passed to this authorizer.

expires_at (int) Expiration time for the starting access_token expressed as a POSIX times-
tamp (i.e. seconds since the epoch)

on_refresh (callable) A callback which is triggered any time this authorizer fetches a new ac-
cess_token. The on_refresh callable is invoked on the OAuthTokenResponse object
resulting from the token being refreshed. It should take only one argument, the token response
object.

This is useful for implementing storage for Access Tokens, as the on_refresh callback can
be used to update the Access Tokens and their expiration times.

1.9 Globus SDK Configuration

There are three standard, canonical locations from which the Globus SDK will attempt to load configuration.

56 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

There are two config file locations:

/etc/globus.cfg # system config, shared by all users
~/.globus.cfg # personal config, specific to your user

additionally, the shell environment variables loaded into Python’s os.environ will be searched for configuration.

The precedence rules are very simply

1. Environment

2. ~/.globus.cfg

3. /etc/globus.cfg

1.9.1 Config Format

Config files are INI formatted, so they take the general form

[SectionName]
key1 = value1
key2 = value2

At present, there are no configuration parameters which you should set in config files.

The Globus CLI uses the [cli] section to store configuration information.

1.9.2 Environment Variables

GLOBUS_SDK_ENVIRONMENT is a shell variable that can be used to point the SDK to an alternate set of Globus
Servers.

For example, if you have an integration with Globus you may be asked to test against a preview of upcoming changes.
To point the SDK at the Preview environment GLOBUS_SDK_ENVIRONMENT=preview can be used.

1.10 Deprecations

The Globus SDK uses python DeprecationWarning and PendingDeprecationWarning classes to indicate
deprecated and soon-to-be deprecated behaviors. In order to see these warnings, run python with the flags:

python -Wonce::DeprecationWarning \
-Wonce::PendingDeprecationWarning

Note: The -W flag must precede any module you are passing to python, or it will be fed into sys.argv inside of
the module.

1.11 Globus SDK Examples

Each of these pages contains an example of a piece of SDK functionality.

1.11.1 API Authorization

Using a GlobusAuthorizer is hard to grasp without a few examples to reference. The basic usage should be to
create these at client instantiation time.

1.10. Deprecations 57

globus-sdk-python Documentation, Release 1.7.1

Access Token Authorization on AuthClient and TransferClient

Perhaps you’re in a part of your application that only sees Access Tokens. Access Tokens are used to directly authenti-
cate calls against Globus APIs, and are limited-lifetime credentials. You have distinct Access Tokens for each Globus
service which you want to access.

With the tokens in hand, it’s just a simple matter of wrapping the tokens in AccessTokenAuthorizer objects.

from globus_sdk import AuthClient, TransferClient, AccessTokenAuthorizer

AUTH_ACCESS_TOKEN = '...'
TRANSFER_ACCESS_TOKEN = '...'

note that we don't provide the client ID in this case
if you're using an Access Token you can't do the OAuth2 flows
auth_client = AuthClient(

authorizer=AccessTokenAuthorizer(AUTH_ACCESS_TOKEN))

transfer_client = TransferClient(
authorizer=AccessTokenAuthorizer(TRANSFER_ACCESS_TOKEN))

Refresh Token Authorization on AuthClient and TransferClient

Refresh Tokens are long-lived credentials used to get new Access Tokens whenever they expire. However, it would be
very awkward to create a new client instance every time your credentials expire!

Instead, use a RefreshTokenAuthorizer to automatically re-up your credentials whenever they near expiration.

Re-upping credentials is an operation that requires having client credentials for Globus Auth, so creating the authorizer
is more complex this time.

from globus_sdk import (AuthClient, TransferClient, ConfidentialAppAuthClient,
RefreshTokenAuthorizer)

for doing the refresh
CLIENT_ID = '...'
CLIENT_SECRET = '...'

the actual tokens
AUTH_REFRESH_TOKEN = '...'
TRANSFER_REFRESH_TOKEN = '...'

making the authorizer requires that we have an AuthClient which can talk
OAuth2 to Globus Auth
internal_auth_client = ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)

now let's bake a couple of authorizers
auth_authorizer = RefreshTokenAuthorizer(AUTH_REFRESH_TOKEN,

internal_auth_client)
transfer_authorizer = RefreshTokenAuthorizer(TRANSFER_REFRESH_TOKEN,

internal_auth_client)

auth_client here is totally different from "internal_auth_client" above
the former is being used to request new tokens periodically, while this
one represents a user authenticated with those tokens
auth_client = AuthClient(authorizer=auth_authorizer)
transfer_client doesn't have to contend with this duality -- it's always

58 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

representing a user
transfer_client = TransferClient(authorizer=transfer_authorizer)

Basic Auth on an AuthClient

If you’re using an AuthClient to do OAuth2 flows, you likely want to authenticate it using your client credentials
– the client ID and client secret.

The preferred method is to use the AuthClient subclass which automatically specifies its authorizer. Internally, this
will use a BasicAuthorizer to do Basic Authentication.

By way of example:

from globus_sdk import ConfidentialAppAuthClient

CLIENT_ID = '...'
CLIENT_SECRET = '...'

client = ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)

and you’re off to the races!

Under the hood, this is implicitly running

AuthClient(authorizer=BasicAuthorizer(CLIENT_ID, CLIENT_SECRET))

but don’t do this yourself – ConfidentialAppAuthClient has different methods from the base AuthClient.

1.11.2 Native App Login

This is an example of the use of the Globus SDK to carry out an OAuth2 Native App Authentication flow.

The goal here is to have a user authenticate in Globus Auth, and for the SDK to procure tokens which may be used to
authenticate SDK calls against various services for that user.

Get a Client

In order to complete an OAuth2 flow to get tokens, you must have a client definition registered with Globus Auth. To
do so, follow the relevant documentation for the Globus Auth Service or go directly to developers.globus.org to do the
registration.

Make sure, when registering your application, that you enter https://auth.globus.org/v2/web/auth-code
into the “Redirect URIs” field. This is necessary to leverage the default behavior of the SDK, and is typically sufficient
for this type of application.

Do the Flow

If you want to copy-paste an example, you’ll need at least a client_id for your AuthClient object. You should
also specifically use the NativeAppAuthClient type of AuthClient, as it has been customized to handle this
flow.

The shortest version of the flow looks like this:

1.11. Globus SDK Examples 59

https://docs.globus.org/api/auth/
https://developers.globus.org/

globus-sdk-python Documentation, Release 1.7.1

import globus_sdk

you must have a client ID
CLIENT_ID = '...'

client = globus_sdk.NativeAppAuthClient(CLIENT_ID)
client.oauth2_start_flow()

authorize_url = client.oauth2_get_authorize_url()
print('Please go to this URL and login: {0}'.format(authorize_url))

or just input() on python3
auth_code = raw_input(

'Please enter the code you get after login here: ').strip()
token_response = client.oauth2_exchange_code_for_tokens(auth_code)

the useful values that you want at the end of this
globus_auth_data = token_response.by_resource_server['auth.globus.org']
globus_transfer_data = token_response.by_resource_server['transfer.api.globus.org']
globus_auth_token = globus_auth_data['access_token']
globus_transfer_token = globus_transfer_data['access_token']

Do It With Refresh Tokens

The flow above will give you access tokens (short-lived credentials), good for one-off operations. However, if you
want a persistent credential to access the logged-in user’s Globus resources, you need to request a long-lived credential
called a Refresh Token.

refresh_tokens is a boolean option to the oauth2_start_flow method. When False, the flow will terminate
with a collection of Access Tokens, which are simple limited lifetime credentials for accessing services. When True,
the flow will terminate not only with the Access Tokens, but additionally with a set of Refresh Tokens which can be
used indefinitely to request new Access Tokens. The default is False.

Simply add this option to the example above:

client.oauth2_start_flow(refresh_tokens=True)

1.11.3 Client Credentials Authentication

This is an example of the use of the Globus SDK to carry out an OAuth2 Client Credentials Authentication flow.

The goal here is to have an application authenticate in Globus Auth directly, as itself. Unlike many other OAuth2
flows, the application does not act on behalf of a user, but on its own behalf.

This flow is suitable for automated cases in which an application, even one as simple as a cron job, makes use of
Globus outside of the context of a specific end-user interaction.

Get a Client

In order to complete an OAuth2 flow to get tokens, you must have a client definition registered with Globus Auth. To
do so, follow the relevant documentation for the Globus Auth Service or go directly to developers.globus.org to do the
registration.

During registration, make sure that the “Native App” checkbox is unchecked. You will typically want your scopes to
be openid, profile, email, and urn:globus:auth:scope:transfer.api.globus.org:all.

60 Chapter 1. Table of Contents

https://docs.globus.org/api/auth/
https://developers.globus.org/

globus-sdk-python Documentation, Release 1.7.1

Once your client is created, expand it on the Projects page and click “Generate Secret”. Save the secret in a secure
location accessible from your code.

Do the Flow

You should specifically use the ConfidentialAppAuthClient type of AuthClient, as it has been customized
to handle this flow.

The shortest version of the flow looks like this:

import globus_sdk

you must have a client ID
CLIENT_ID = '...'
the secret, loaded from wherever you store it
CLIENT_SECRET = '...'

client = globus_sdk.ConfidentialAppAuthClient(CLIENT_ID, CLIENT_SECRET)
token_response = client.oauth2_client_credentials_tokens()

the useful values that you want at the end of this
globus_auth_data = token_response.by_resource_server['auth.globus.org']
globus_transfer_data = token_response.by_resource_server['transfer.api.globus.org']
globus_auth_token = globus_auth_data['access_token']
globus_transfer_token = globus_transfer_data['access_token']

Use the Resulting Tokens

The Client Credentials Grant will only produce Access Tokens, not Refresh Tokens, so you should pass its results
directly to the AccessTokenAuthorizer.

For example, after running the code above,

authorizer = globus_sdk.AccessTokenAuthorizer(globus_transfer_token)
tc = globus_sdk.TransferClient(authorizer=authorizer)
print("Endpoints Belonging to {}@clients.auth.globus.org:"

.format(CLIENT_ID))
for ep in tc.endpoint_search(filter_scope="my-endpoints"):

print("[{}] {}".format(ep["id"], ep["display_name"]))

Note that we’re doing a search for “my endpoints”, but we refer to the results as belonging to
<CLIENT_ID>@clients.auth.globus.org. The “current user” is not any human user, but the client itself.

Handling Token Expiration

When you get access tokens, you also get their expiration time in seconds. You can inspect the
globus_transfer_data and globus_auth_data structures in the example to see.

Tokens should have a long enough lifetime for any short-running operations (less than a day).

When your tokens are expired, you should just request new ones by making another Client Credentials request. De-
pending on your needs, you may need to track the expiration times along with your tokens.

1.11. Globus SDK Examples 61

globus-sdk-python Documentation, Release 1.7.1

1.11.4 Using ClientCredentialsAuthorizer

The SDK also provides a specialized Authorizer which can be used to automatically handle token expiration.

Use it like so:

import globus_sdk

you must have a client ID
CLIENT_ID = '...'
the secret, loaded from wherever you store it
CLIENT_SECRET = '...'

confidential_client = globus_sdk.ConfidentialAppAuthClient(
client_id=CLIENT_ID, client_secret=CLIENT_SECRET)

scopes = "urn:globus:auth:scopes:transfer.api.globus.org:all"
cc_authorizer = globus_sdk.ClientCredentialsAuthorizer(

confidential_client, scopes)
create a new client
transfer_client = globus_sdk.TransferClient(authorizer=cc_authorizer)

usage is still the same
print("Endpoints Belonging to {}@clients.auth.globus.org:"

.format(CLIENT_ID))
for ep in tc.endpoint_search(filter_scope="my-endpoints"):

print("[{}] {}".format(ep["id"], ep["display_name"]))

1.11.5 Three Legged OAuth with Flask

This type of authorization is used for web login with a server-side application. For example, a Django app or other
application server handles requests.

This example uses Flask, but should be easily portable to other application frameworks.

Components

There are two components to this application: login and logout.

Login sends a user to Globus Auth to get credentials, and then may act on the user’s behalf. Logout invalidates server-
side credentials, so that the application may no longer take actions for the user, and the client-side session, allowing
for a fresh login if desired.

Register an App

In order to complete an OAuth2 flow to get tokens, you must have a client definition registered with Globus Auth. To
do so, follow the relevant documentation for the Globus Auth Service or go directly to developers.globus.org to do the
registration.

Make sure that the “Native App” checkbox is unchecked, and list http://localhost:5000/login in the
“Redirect URIs”.

Set the Scopes to openid, profile, email, urn:globus:auth:scope:transfer.api.globus.org:all.

On the projects page, expand the client description and click “Generate Secret”. Save the resulting secret a file named
example_app.conf, along with the client ID:

62 Chapter 1. Table of Contents

https://docs.globus.org/api/auth/
https://developers.globus.org/

globus-sdk-python Documentation, Release 1.7.1

SERVER_NAME = 'localhost:5000'
this is the session secret, used to protect the Flask session. You should
use a longer secret string known only to your application
details are beyond the scope of this example
SECRET_KEY = 'abc123!'

APP_CLIENT_ID = '<CLIENT_ID>'
APP_CLIENT_SECRET = '<CLIENT_SECRET>'

Shared Utilities

Some pieces that are of use for both parts of this flow.

First, you’ll need to install Flask and the globus-sdk. Assuming you want to do so into a fresh virtualenv:

$ virtualenv example-venv
...
$ source example-venv/bin/activate
$ pip install Flask==0.11.1 globus-sdk
...

You’ll also want a shared function for loading the SDK AuthClient which represents your application, as you’ll
need it in a couple of places. Create it, along with the defintiion for your Flask app, in example_app.py:

from flask import Flask, url_for, session, redirect, request
import globus_sdk

app = Flask(__name__)
app.config.from_pyfile('example_app.conf')

actually run the app if this is called as a script
if __name__ == '__main__':

app.run()

def load_app_client():
return globus_sdk.ConfidentialAppAuthClient(

app.config['APP_CLIENT_ID'], app.config['APP_CLIENT_SECRET'])

Login

Let’s add login functionality to the end of example_app.py, along with a basic index page:

@app.route('/')
def index():

"""
This could be any page you like, rendered by Flask.
For this simple example, it will either redirect you to login, or print
a simple message.
"""
if not session.get('is_authenticated'):

return redirect(url_for('login'))
return "You are successfully logged in!"

@app.route('/login')

1.11. Globus SDK Examples 63

globus-sdk-python Documentation, Release 1.7.1

def login():
"""
Login via Globus Auth.
May be invoked in one of two scenarios:

1. Login is starting, no state in Globus Auth yet
2. Returning to application during login, already have short-lived

code from Globus Auth to exchange for tokens, encoded in a query
param

"""
the redirect URI, as a complete URI (not relative path)
redirect_uri = url_for('login', _external=True)

client = load_app_client()
client.oauth2_start_flow(redirect_uri)

If there's no "code" query string parameter, we're in this route
starting a Globus Auth login flow.
Redirect out to Globus Auth
if 'code' not in request.args:

auth_uri = client.oauth2_get_authorize_url()
return redirect(auth_uri)

If we do have a "code" param, we're coming back from Globus Auth
and can start the process of exchanging an auth code for a token.
else:

code = request.args.get('code')
tokens = client.oauth2_exchange_code_for_tokens(code)

store the resulting tokens in the session
session.update(

tokens=tokens.by_resource_server,
is_authenticated=True

)
return redirect(url_for('index'))

Logout

Logout is very simple – it’s just a matter of cleaning up the session. It does the added work of cleaning up any tokens
you fetched by invalidating them in Globus Auth beforehand:

@app.route('/logout')
def logout():

"""
- Revoke the tokens with Globus Auth.
- Destroy the session state.
- Redirect the user to the Globus Auth logout page.
"""
client = load_app_client()

Revoke the tokens with Globus Auth
for token in (token_info['access_token']

for token_info in session['tokens'].values()):
client.oauth2_revoke_token(token)

Destroy the session state
session.clear()

64 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

the return redirection location to give to Globus AUth
redirect_uri = url_for('index', _external=True)

build the logout URI with query params
there is no tool to help build this (yet!)
globus_logout_url = (

'https://auth.globus.org/v2/web/logout' +
'?client={}'.format(app.config['PORTAL_CLIENT_ID']) +
'&redirect_uri={}'.format(redirect_uri) +
'&redirect_name=Globus Example App')

Redirect the user to the Globus Auth logout page
return redirect(globus_logout_url)

Using the Tokens

Using the tokens thus acquired is a simple matter of pulling them out of the session and putting one into an
AccessTokenAuthorizer. For example, one might do the following:

authorizer = globus_sdk.AccessTokenAuthorizer(
session['tokens']['transfer.api.globus.org']['access_token'])

transfer_client = globus_sdk.TransferClient(authorizer=authorizer)

print("Endpoints belonging to the current logged-in user:")
for ep in transfer_client.endpoint_search(filter_scope="my-endpoints"):

print("[{}] {}".format(ep["id"], ep["display_name"]))

1.11.6 Advanced Transfer Client Usage

This is a collection of examples of advanced usage patterns leveraging the TransferClient.

Relative Task Deadlines

One of the lesser-known features of the Globus Transfer service is the ability for users to set a deadline by which
a Transfer or Delete task must complete. If the task is still in progress when the deadline is reached, it is aborted.

You can use this, for example, to enforce that a Transfer Task which takes too long results in errors (even if it is making
slow progress).

Because the deadline is accepted as an ISO 8601 date, you can use python’s built-in datetime library to compute
a timestamp to pass to the service.

Start out by computing the current time as a datetime:

import datetime
now = datetime.datetime.utcnow()

Then, compute a relative timestamp using timedelta:

future_1minute = now + datetime.timedelta(minutes=1)

This value can be passed to a TransferData, as in

import globus_sdk
get various components needed for a Transfer Task
beyond the scope of this example

1.11. Globus SDK Examples 65

globus-sdk-python Documentation, Release 1.7.1

transfer_client = globus_sdk.TransferClient(...)
source_endpoint_uuid = ...
dest_endpoint_uuid = ...

note how `future_1minute` is used here
submission_data = globus_sdk.TransferData(

transfer_client, source_endpoint_uuid, dest_endpoint_uuid,
deadline=str(future_1minute))

Retrying Task Submission

Globus Transfer and Delete Tasks are often scheduled and submitted by automated systems and scripts. In these
scenarios, it’s often desirable to retry submission in the event of network or service errors to ensure that the job is
really submitted.

There are two key pieces to doing this correctly: Once and Only Once Submission, and logging captured errors.

For once-and-only-once task submission, you can explicitly invoke TransferClient.get_submission_id(),
which is a unique ID used to ensure exactly this. However, TransferData and DeleteData both implicitly
invoke this method if they are initialized without an explicit submission_id.

For proper logging, we’ll rely on the standard library logging package.

In this example, we’ll retry task submission 5 times, and we’ll want to separate retry logic from the core task submis-
sion logic.

import logging
from globus_sdk import GlobusAPIError, NetworkError

putting logger objects named by the module name into the module-level
scope is a common best practice -- for more details, you should look
into the python logging documentation
logger = logging.getLogger(__name__)

def retry_globus_function(func, retries=5, func_name='<func>'):
"""
Define what it means to retry a "Globus Function", some function or
method which produces Globus SDK errors on failure.
"""
def actually_retry():

"""
Helper: run the next retry
"""
return retry_globus_function(func, retries=(retries - 1),

func_name=func_name)

def check_for_reraise():
"""
Helper: check if we should reraise an error

logs an error message on reraise
must be run inside an exception handler

"""
if retries < 1:

logger.error('Retried {} too many times.'
.format(func_name))

raise

66 Chapter 1. Table of Contents

globus-sdk-python Documentation, Release 1.7.1

try:
return func()

except NetworkError:
log with exc_info=True to capture a full stacktrace as a
debug-level log
logger.debug(('Globus func {} experienced a network error'

.format(func_name)), exc_info=True)
check_for_reraise()

except GlobusAPIError:
again, log with exc_info=True to capture a full stacktrace
logger.warn(('Globus func {} experienced a network error'

.format(func_name)), exc_info=True)
check_for_reraise()

if we reach this point without returning or erroring, retry
return actually_retry()

The above is a fairly generic tool for retrying any function which throws globus_sdk.NetworkError and
globus_sdk.GlobusAPIError errors. It is not even specific to task resubmission, so you could use it against
other retry-safe Globus APIs.

Now, moving on to creating a retry-safe function to put into it, things get a little bit tricky. The retry handler above
requires a function which takes no arguments, so we’ll have to define a function dynamically which fits that constraint:

def submit_transfer_with_retries(transfer_client, transfer_data):
create a function with no arguments, for our retry handler
def locally_bound_func():

return transfer_client.submit_transfer(transfer_data)
return retry_globus_function(locally_bound_func,

func_name='submit_transfer')

Now we’re finally all-set to create a TransferData and submit it:

from globus_sdk import TransferClient, TransferData
get various components needed for a Transfer Task
beyond the scope of this example
transfer_client = TransferClient(...)
source_endpoint_uuid = ...
dest_endpoint_uuid = ...

submission_data = TransferData(
transfer_client, source_endpoint_uuid, dest_endpoint_uuid)

add any number of items to the submission data
submission_data.add_item('/source/path', 'dest/path')
...

do it!
submit_transfer_with_retries(transfer_client, submission_data)

The same exact approach can be applied to TransferClient.submit_delete, and a wide variety of other
SDK methods.

1.11. Globus SDK Examples 67

globus-sdk-python Documentation, Release 1.7.1

68 Chapter 1. Table of Contents

CHAPTER 2

License

Copyright 2016 University of Chicago

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

69

http://www.apache.org/licenses/LICENSE-2.0

globus-sdk-python Documentation, Release 1.7.1

70 Chapter 2. License

Python Module Index

g
globus_sdk.auth, 28
globus_sdk.search, 34
globus_sdk.transfer, 8
globus_sdk.transfer.response, 43

71

globus-sdk-python Documentation, Release 1.7.1

72 Python Module Index

Index

A
AccessTokenAuthorizer (class in globus_sdk), 55
ActivationRequirementsResponse (class in

globus_sdk.transfer.response), 43
active_until() (globus_sdk.transfer.response.ActivationRequirementsResponse

method), 44
add_endpoint_acl_rule() (globus_sdk.TransferClient

method), 15
add_endpoint_role() (globus_sdk.TransferClient

method), 14
add_endpoint_server() (globus_sdk.TransferClient

method), 14
add_item() (globus_sdk.DeleteData method), 27
add_item() (globus_sdk.TransferData method), 27
add_symlink_item() (globus_sdk.TransferData method),

27
always_activated (globus_sdk.transfer.response.ActivationRequirementsResponse

attribute), 44
AuthClient (class in globus_sdk), 28

B
BaseClient (class in globus_sdk.base), 40
BasicAuthorizer (class in globus_sdk), 55
bookmark_list() (globus_sdk.TransferClient method), 16
by_resource_server (globus_sdk.auth.token_response.OAuthTokenResponse

attribute), 46
by_scopes (globus_sdk.auth.token_response.OAuthTokenResponse

attribute), 46

C
cancel_task() (globus_sdk.TransferClient method), 19
ClientCredentialsAuthorizer (class in globus_sdk), 56
ConfidentialAppAuthClient (class in globus_sdk), 32
create_bookmark() (globus_sdk.TransferClient method),

16
create_endpoint() (globus_sdk.TransferClient method),

10
create_entry() (globus_sdk.SearchClient method), 38
create_shared_endpoint() (globus_sdk.TransferClient

method), 13

D
data (globus_sdk.response.GlobusResponse attribute), 43
data (globus_sdk.transfer.paging.PaginatedResource at-

tribute), 45
decode_id_token() (globus_sdk.auth.token_response.OAuthTokenResponse

method), 46
delete() (globus_sdk.base.BaseClient method), 41
delete_bookmark() (globus_sdk.TransferClient method),

16
delete_by_query() (globus_sdk.SearchClient method), 37
delete_endpoint() (globus_sdk.TransferClient method),

11
delete_endpoint_acl_rule() (globus_sdk.TransferClient

method), 16
delete_endpoint_role() (globus_sdk.TransferClient

method), 15
delete_endpoint_server() (globus_sdk.TransferClient

method), 14
delete_entry() (globus_sdk.SearchClient method), 39
delete_subject() (globus_sdk.SearchClient method), 38
DeleteData (class in globus_sdk), 27

E
endpoint_acl_list() (globus_sdk.TransferClient method),

15
endpoint_activate() (globus_sdk.TransferClient method),

13
endpoint_autoactivate() (globus_sdk.TransferClient

method), 12
endpoint_deactivate() (globus_sdk.TransferClient

method), 12
endpoint_get_activation_requirements()

(globus_sdk.TransferClient method), 13
endpoint_id (globus_sdk.LocalGlobusConnectPersonal

attribute), 49
endpoint_manager_acl_list() (globus_sdk.TransferClient

method), 21
endpoint_manager_cancel_status()

(globus_sdk.TransferClient method), 23
endpoint_manager_cancel_tasks()

73

globus-sdk-python Documentation, Release 1.7.1

(globus_sdk.TransferClient method), 23
endpoint_manager_create_pause_rule()

(globus_sdk.TransferClient method), 24
endpoint_manager_delete_pause_rule()

(globus_sdk.TransferClient method), 25
endpoint_manager_get_endpoint()

(globus_sdk.TransferClient method), 21
endpoint_manager_get_pause_rule()

(globus_sdk.TransferClient method), 25
endpoint_manager_get_task()

(globus_sdk.TransferClient method), 22
endpoint_manager_hosted_endpoint_list()

(globus_sdk.TransferClient method), 21
endpoint_manager_monitored_endpoints()

(globus_sdk.TransferClient method), 21
endpoint_manager_pause_rule_list()

(globus_sdk.TransferClient method), 24
endpoint_manager_pause_tasks()

(globus_sdk.TransferClient method), 23
endpoint_manager_resume_tasks()

(globus_sdk.TransferClient method), 24
endpoint_manager_task_event_list()

(globus_sdk.TransferClient method), 22
endpoint_manager_task_list()

(globus_sdk.TransferClient method), 21
endpoint_manager_task_pause_info()

(globus_sdk.TransferClient method), 22
endpoint_manager_task_successful_transfers()

(globus_sdk.TransferClient method), 23
endpoint_manager_update_pause_rule()

(globus_sdk.TransferClient method), 25
endpoint_role_list() (globus_sdk.TransferClient method),

14
endpoint_search() (globus_sdk.TransferClient method),

11
endpoint_server_list() (globus_sdk.TransferClient

method), 14
exchange_code_for_tokens()

(globus_sdk.auth.GlobusAuthorizationCodeFlowManager
method), 51

exchange_code_for_tokens()
(globus_sdk.auth.GlobusNativeAppFlowManager
method), 50

exchange_code_for_tokens()
(globus_sdk.auth.oauth2_flow_manager.GlobusOAuthFlowManager
method), 52

G
get() (globus_sdk.base.BaseClient method), 41
get() (globus_sdk.response.GlobusResponse method), 43
get_authorize_url() (globus_sdk.auth.GlobusAuthorizationCodeFlowManager

method), 51
get_authorize_url() (globus_sdk.auth.GlobusNativeAppFlowManager

method), 50

get_authorize_url() (globus_sdk.auth.oauth2_flow_manager.GlobusOAuthFlowManager
method), 52

get_bookmark() (globus_sdk.TransferClient method), 16
get_endpoint() (globus_sdk.TransferClient method), 10
get_endpoint_acl_rule() (globus_sdk.TransferClient

method), 15
get_endpoint_role() (globus_sdk.TransferClient method),

15
get_endpoint_server() (globus_sdk.TransferClient

method), 14
get_entry() (globus_sdk.SearchClient method), 38
get_identities() (globus_sdk.AuthClient method), 28
get_index() (globus_sdk.SearchClient method), 35
get_query_template() (globus_sdk.SearchClient method),

39
get_query_template_list() (globus_sdk.SearchClient

method), 39
get_subject() (globus_sdk.SearchClient method), 37
get_submission_id() (globus_sdk.TransferClient

method), 17
get_task() (globus_sdk.SearchClient method), 39
get_task() (globus_sdk.TransferClient method), 19
get_task_list() (globus_sdk.SearchClient method), 40
globus_sdk.auth (module), 28
globus_sdk.search (module), 34
globus_sdk.transfer (module), 8
globus_sdk.transfer.response (module), 43
GlobusAPIError (class in globus_sdk), 47
GlobusAuthorizationCodeFlowManager (class in

globus_sdk.auth), 51
GlobusAuthorizer (class in globus_sdk.authorizers.base),

53
GlobusConnectionError (class in globus_sdk), 48
GlobusConnectionTimeoutError (class in globus_sdk), 48
GlobusError (class in globus_sdk), 47
GlobusHTTPResponse (class in globus_sdk.response), 43
GlobusNativeAppFlowManager (class in

globus_sdk.auth), 50
GlobusOAuthFlowManager (class in

globus_sdk.auth.oauth2_flow_manager),
52

GlobusResponse (class in globus_sdk.response), 43
GlobusSDKUsageError (class in globus_sdk), 47
GlobusTimeoutError (class in globus_sdk), 48

H
handle_missing_authorization()

(globus_sdk.authorizers.base.GlobusAuthorizer
method), 54

handle_missing_authorization()
(globus_sdk.authorizers.renewing.RenewingAuthorizer
method), 54

74 Index

globus-sdk-python Documentation, Release 1.7.1

I
ingest() (globus_sdk.SearchClient method), 36
IterableTransferResponse (class in

globus_sdk.transfer.response), 43

L
LocalGlobusConnectPersonal (class in globus_sdk), 49

M
my_effective_pause_rule_list()

(globus_sdk.TransferClient method), 13
my_shared_endpoint_list() (globus_sdk.TransferClient

method), 13

N
NativeAppAuthClient (class in globus_sdk), 31
NetworkError (class in globus_sdk), 48
NullAuthorizer (class in globus_sdk), 54

O
oauth2_client_credentials_tokens()

(globus_sdk.ConfidentialAppAuthClient
method), 33

oauth2_exchange_code_for_tokens()
(globus_sdk.AuthClient method), 29

oauth2_get_authorize_url() (globus_sdk.AuthClient
method), 29

oauth2_get_dependent_tokens()
(globus_sdk.ConfidentialAppAuthClient
method), 33

oauth2_refresh_token() (globus_sdk.AuthClient method),
30

oauth2_refresh_token() (globus_sdk.NativeAppAuthClient
method), 32

oauth2_revoke_token() (globus_sdk.AuthClient method),
30

oauth2_start_flow() (globus_sdk.ConfidentialAppAuthClient
method), 33

oauth2_start_flow() (globus_sdk.NativeAppAuthClient
method), 32

oauth2_token() (globus_sdk.AuthClient method), 31
oauth2_token_introspect()

(globus_sdk.ConfidentialAppAuthClient
method), 34

oauth2_userinfo() (globus_sdk.AuthClient method), 31
oauth2_validate_token() (globus_sdk.AuthClient

method), 30
OAuthDependentTokenResponse (class in

globus_sdk.auth.token_response), 46
OAuthTokenResponse (class in

globus_sdk.auth.token_response), 46
operation_ls() (globus_sdk.TransferClient method), 16

operation_mkdir() (globus_sdk.TransferClient method),
17

operation_rename() (globus_sdk.TransferClient method),
17

operation_symlink() (globus_sdk.TransferClient
method), 17

P
PaginatedResource (class in globus_sdk.transfer.paging),

45
post() (globus_sdk.base.BaseClient method), 41
post_search() (globus_sdk.SearchClient method), 35
put() (globus_sdk.base.BaseClient method), 42

R
raw_json (globus_sdk.GlobusAPIError attribute), 48
raw_text (globus_sdk.GlobusAPIError attribute), 48
RefreshTokenAuthorizer (class in globus_sdk), 55
RenewingAuthorizer (class in

globus_sdk.authorizers.renewing), 54

S
search() (globus_sdk.SearchClient method), 35
SearchAPIError (class in globus_sdk.exc), 40
SearchClient (class in globus_sdk), 34
SearchQuery (class in globus_sdk), 40
set_app_name() (globus_sdk.base.BaseClient method),

41
set_authorization_header()

(globus_sdk.AccessTokenAuthorizer method),
55

set_authorization_header()
(globus_sdk.authorizers.base.GlobusAuthorizer
method), 53

set_authorization_header()
(globus_sdk.authorizers.renewing.RenewingAuthorizer
method), 54

set_authorization_header() (globus_sdk.BasicAuthorizer
method), 55

set_authorization_header() (globus_sdk.NullAuthorizer
method), 55

submit_delete() (globus_sdk.TransferClient method), 18
submit_transfer() (globus_sdk.TransferClient method),

18
supports_auto_activation

(globus_sdk.transfer.response.ActivationRequirementsResponse
attribute), 44

supports_web_activation (globus_sdk.transfer.response.ActivationRequirementsResponse
attribute), 45

T
task_event_list() (globus_sdk.TransferClient method), 19
task_list() (globus_sdk.TransferClient method), 18

Index 75

globus-sdk-python Documentation, Release 1.7.1

task_pause_info() (globus_sdk.TransferClient method),
20

task_successful_transfers() (globus_sdk.TransferClient
method), 20

task_wait() (globus_sdk.TransferClient method), 20
text (globus_sdk.response.GlobusHTTPResponse at-

tribute), 43
TransferAPIError (class in globus_sdk.exc), 28
TransferClient (class in globus_sdk), 8
TransferData (class in globus_sdk), 26
TransferResponse (class in globus_sdk.transfer.response),

43

U
update_bookmark() (globus_sdk.TransferClient method),

16
update_endpoint() (globus_sdk.TransferClient method),

10
update_endpoint_acl_rule() (globus_sdk.TransferClient

method), 16
update_endpoint_server() (globus_sdk.TransferClient

method), 14
update_entry() (globus_sdk.SearchClient method), 39
update_task() (globus_sdk.TransferClient method), 19

76 Index

	Table of Contents
	Installation
	SDK Tutorial
	Step 1: Get a Client
	Step 2: Get and Save Client ID
	Step 3: Get Some Access Tokens!
	Step 4: Use Your Tokens, Talk to the Service
	Advanced Tutorial

	Service Clients
	Transfer Client
	Auth Client
	Search Client (BETA)
	Low Level API
	Multi-Thread and Multi-Process Safety

	Responses
	Generic Response Classes
	Service-Specific Response Classes

	Exceptions
	Error Classes

	Local Endpoints
	Globus Connect Server
	Globus Connect Personal

	Globus Auth / OAuth2
	OAuth Flows
	Resource Servers and Scopes

	API Authorization
	The Authorizer Interface
	Authorizer Types

	Globus SDK Configuration
	Config Format
	Environment Variables

	Deprecations
	Globus SDK Examples
	API Authorization
	Native App Login
	Client Credentials Authentication
	Using ClientCredentialsAuthorizer
	Three Legged OAuth with Flask
	Advanced Transfer Client Usage

	License
	Python Module Index

